intel / sum_model.py
joey1101's picture
Create sum_model.py
f73ebce verified
raw
history blame
6.01 kB
from ipex_llm.langchain.llms import TransformersLLM
from langchain import LLMChain
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
class Sum():
def __init__(self, args):
self.llm_version = args.llm_version
# self.max_tokens = args.qa_max_new_tokens
def summarize_refine(self, script):
text_splitter = CharacterTextSplitter(chunk_size=1024, separator="\n", chunk_overlap=0)
texts = text_splitter.split_text(script)
docs = [Document(page_content=t) for t in texts]
llm = TransformersLLM.from_model_id_low_bit(f"checkpoint\\{self.llm_version}")
prompt_template = """Write a concise summary of the following:
{text}
CONCISE SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
refine_template = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"If the context isn't useful, return the original summary."
)
refine_prompt = PromptTemplate.from_template(refine_template)
chain = load_summarize_chain(
llm=llm,
chain_type="refine",
question_prompt=prompt,
refine_prompt=refine_prompt,
return_intermediate_steps=True,
input_key="input_documents",
output_key="output_text",
)
result = chain({"input_documents": docs}, return_only_outputs=True)
return result
def summarize_mapreduce(self, script):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
texts = text_splitter.split_text(script)
text = [Document(page_content=t) for t in texts]
llm = TransformersLLM.from_model_id_low_bit(f"checkpoint\\{self.llm_version}")
# Map
map_template = """The following is a meeting recording
=========
{texts}
=========
Based on this list of recordings, please summary the main idea briefly
Helpful Answer:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=llm, prompt=map_prompt, llm_kwargs={"max_new_tokens": 512})
# Reduce
reduce_template = """The following is set of summaries:
=========
{texts}
=========
Take these and distill it into a final, consolidated summary of the meeting.
Helpful Answer:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt, llm_kwargs={"max_new_tokens": 4096})
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="texts"
)
# Combines and iteratively reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=combine_documents_chain,
token_max=4000,
)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="texts",
return_intermediate_steps=False,
)
result = map_reduce_chain({"input_documents": text}, return_only_outputs=True)
# print("-." * 40)
# print(result)
result = result['output_text'].split("Helpful Answer:").strip()[-1]
return result
def summarize(self, script):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=0)
texts = text_splitter.split_text(script)
prompt_template = """The following is a piece of meeting recording:
<<<{text}>>>
Based on recording, summary the main idea fluently.
JUST SUMMARY!NO OTHER WORDS!
SUMMARY:"""
reduce_template = """The following is a meeting recording pieces:
<<<{text}>>>
Take these and distill it into a final, consolidated summary of the meeting.
JUST SUMMARY!NO OTHER WORDS!
SUMMARY:"""
print(len(texts))
for text in texts:
print(text)
print("\n")
llm = TransformersLLM.from_model_id_low_bit(
f"checkpoint\\{self.llm_version}")
sum_split = []
for text in texts:
response = llm(prompt=prompt_template.format(text=text), max_new_tokens=1024)
print(response)
response_answer = response.split("SUMMARY:")
sum_split.append(response_answer[1])
sum_all = "\n".join(sum_split)
result = llm(prompt=reduce_template.format(text=sum_all), max_new_tokens=4000)
result_split = result.split("SUMMARY:")
return result_split[1]
# # for test
# import argparse
#
# parser = argparse.ArgumentParser()
# parser.add_argument("--llm_version", default="Llama-2-7b-chat-hf-INT4", help="LLM model version")
# args = parser.parse_args()
# file_path = "../test.txt"
# with open(file_path, "r", encoding="utf-8") as file:
# content = file.read()
# Sumbot = Sum(args)
# result = Sumbot.summarize_map(content)
# print("-." * 20)
# print(result)