image / app.py
joey1101's picture
Update app.py
f2ee39a verified
from transformers import pipeline
import streamlit as st
from PIL import Image
# img2text
def img2text(url):
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
return text
# text2story
def text2story(text):
text_to_story_model = pipeline("text-generation", model="distilbert/distilgpt2")
if isinstance(text, list):
text="".join(text)# Ensure input is a single string
story_text = text_to_story_model(text, max_length=100, num_return_sequences=1)
return story_text[0]['generated text']
# text2audio
def text2audio(story_text):
text_to_audio_model = pipeline("text-to-speech", model="facebook/mms-tts-eng")
audio_data = text_to_audio_model(story_text)
return audio_data
#main part
st.set_page_config(page_title="Your Image to Audio Story",
page_icon="🦜")
st.header("Turn Your Image to Story")
uploaded_file= st.file_uploader("Select an Image...")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name,"wb") as file:
file.write(bytes_data)
st.image(uploaded_file,caption="Uploaded Image",
use_column_width=True)
#Stage 1:Image to Text
st.text('Processing img2text...')
scenario = img2text(uploaded_file)
st.write(scenario)
#Stage 2: Text to Story
st.text('Generating a story...')
story = text2story(scenario)
st.write(story)
#Stage 3:Story to Audio data
st.text('Generating audio data...')
audio_data =text2audio(story)
# Play button
if st.button("Play Audio"):
st.audio(audio_data['audio'],
format="audio/wav",
start_time=0,
sample_rate = audio_data['sampling_rate'])