|
from transformers import pipeline |
|
import streamlit as st |
|
from PIL import Image |
|
|
|
|
|
def img2text(url): |
|
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") |
|
text = image_to_text_model(url)[0]["generated_text"] |
|
return text |
|
|
|
|
|
def text2story(text): |
|
text_to_story_model = pipeline("text-generation", model="distilbert/distilgpt2") |
|
if isinstance(text, list): |
|
text="".join(text) |
|
story_text = text_to_story_model(text, max_length=100, num_return_sequences=1) |
|
return story_text[0]['generated text'] |
|
|
|
|
|
def text2audio(story_text): |
|
text_to_audio_model = pipeline("text-to-speech", model="facebook/mms-tts-eng") |
|
audio_data = text_to_audio_model(story_text) |
|
return audio_data |
|
|
|
|
|
st.set_page_config(page_title="Your Image to Audio Story", |
|
page_icon="π¦") |
|
st.header("Turn Your Image to Story") |
|
uploaded_file= st.file_uploader("Select an Image...") |
|
|
|
if uploaded_file is not None: |
|
print(uploaded_file) |
|
bytes_data = uploaded_file.getvalue() |
|
with open(uploaded_file.name,"wb") as file: |
|
file.write(bytes_data) |
|
st.image(uploaded_file,caption="Uploaded Image", |
|
use_column_width=True) |
|
|
|
|
|
st.text('Processing img2text...') |
|
scenario = img2text(uploaded_file) |
|
st.write(scenario) |
|
|
|
|
|
st.text('Generating a story...') |
|
story = text2story(scenario) |
|
st.write(story) |
|
|
|
|
|
st.text('Generating audio data...') |
|
audio_data =text2audio(story) |
|
|
|
|
|
if st.button("Play Audio"): |
|
st.audio(audio_data['audio'], |
|
format="audio/wav", |
|
start_time=0, |
|
sample_rate = audio_data['sampling_rate']) |
|
|
|
|