Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,32 +15,31 @@ import torch # For tensor operations
|
|
15 |
import soundfile as sf # For saving audio as .wav files
|
16 |
import sentencepiece # Required by SpeechT5Processor for tokenization
|
17 |
|
18 |
-
|
19 |
##########################################
|
20 |
# Streamlit application title and input
|
21 |
##########################################
|
22 |
-
# Display a
|
23 |
st.markdown(
|
24 |
-
"<h1 style='text-align: center; color: #
|
25 |
unsafe_allow_html=True
|
26 |
-
) #
|
27 |
|
28 |
-
# Display a
|
29 |
st.markdown(
|
30 |
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend</h3>",
|
31 |
unsafe_allow_html=True
|
32 |
-
) #
|
33 |
|
34 |
-
#
|
35 |
text = st.text_area(
|
36 |
"Enter your comment",
|
37 |
placeholder="Type something here...",
|
38 |
height=150,
|
39 |
-
help="Write a comment you would like us to
|
40 |
-
)
|
41 |
|
42 |
##########################################
|
43 |
-
# Step 1: Sentiment Analysis Function
|
44 |
##########################################
|
45 |
def analyze_dominant_emotion(user_review):
|
46 |
"""
|
@@ -50,164 +49,155 @@ def analyze_dominant_emotion(user_review):
|
|
50 |
"text-classification",
|
51 |
model="Thea231/jhartmann_emotion_finetuning",
|
52 |
return_all_scores=True
|
53 |
-
) # Load the
|
54 |
-
|
55 |
-
emotion_results =
|
56 |
-
dominant_emotion
|
57 |
-
return dominant_emotion # Return the dominant emotion (label and score)
|
58 |
-
|
59 |
|
60 |
##########################################
|
61 |
-
# Step 2
|
62 |
##########################################
|
63 |
-
|
64 |
def prompt_gen(user_review):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
def response_gen(user_review):
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
input_length = inputs.input_ids.shape[1]
|
162 |
-
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
163 |
-
# print(response)
|
164 |
-
return response
|
165 |
-
|
166 |
-
|
167 |
|
168 |
##########################################
|
169 |
# Step 3: Text-to-Speech Conversion Function
|
170 |
##########################################
|
171 |
def sound_gen(response):
|
172 |
"""
|
173 |
-
Convert the
|
|
|
174 |
"""
|
175 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") #
|
176 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") #
|
177 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") #
|
178 |
-
|
179 |
-
# Create speaker embedding to match text input
|
180 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # Load speaker embeddings
|
181 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Use a default embedding
|
182 |
-
|
183 |
-
# Limit text tokens to match the model's capacity
|
184 |
-
max_tokens = 200 # Limit the input text length to avoid tensor mismatch
|
185 |
-
truncated_response = response[:max_tokens]
|
186 |
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
189 |
|
190 |
with torch.no_grad():
|
191 |
-
speech = vocoder(spectrogram) # Convert spectrogram to waveform
|
192 |
|
193 |
-
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) # Save as .wav file
|
194 |
-
st.audio("customer_service_response.wav", start_time=0) # Embed an
|
195 |
|
196 |
##########################################
|
197 |
# Main Function
|
198 |
##########################################
|
199 |
def main():
|
200 |
"""
|
201 |
-
|
|
|
202 |
"""
|
203 |
-
if text: # Check if the user has entered a comment
|
204 |
-
response = response_gen(text) # Generate the response
|
205 |
st.markdown(
|
206 |
f"<p style='color:#3498DB; font-size:20px;'>{response}</p>",
|
207 |
unsafe_allow_html=True
|
208 |
-
) # Display the response
|
209 |
sound_gen(response) # Convert the response to speech and play it
|
|
|
210 |
|
211 |
-
# Execute the main function
|
212 |
if __name__ == "__main__":
|
213 |
-
main()
|
|
|
15 |
import soundfile as sf # For saving audio as .wav files
|
16 |
import sentencepiece # Required by SpeechT5Processor for tokenization
|
17 |
|
|
|
18 |
##########################################
|
19 |
# Streamlit application title and input
|
20 |
##########################################
|
21 |
+
# Display a deep blue title in large, visually appealing font
|
22 |
st.markdown(
|
23 |
+
"<h1 style='text-align: center; color: #00008B; font-size: 50px;'>Just Comment</h1>",
|
24 |
unsafe_allow_html=True
|
25 |
+
) # Set a deep blue title
|
26 |
|
27 |
+
# Display a gentle, warm subtitle below the title
|
28 |
st.markdown(
|
29 |
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend</h3>",
|
30 |
unsafe_allow_html=True
|
31 |
+
) # Show a friendly subtitle
|
32 |
|
33 |
+
# Provide a text area for user input with placeholder and tooltip
|
34 |
text = st.text_area(
|
35 |
"Enter your comment",
|
36 |
placeholder="Type something here...",
|
37 |
height=150,
|
38 |
+
help="Write a comment you would like us to respond to!" # Tooltip for guidance
|
39 |
+
) # Create a text input area
|
40 |
|
41 |
##########################################
|
42 |
+
# Step 1: Sentiment Analysis Function (Unused here)
|
43 |
##########################################
|
44 |
def analyze_dominant_emotion(user_review):
|
45 |
"""
|
|
|
49 |
"text-classification",
|
50 |
model="Thea231/jhartmann_emotion_finetuning",
|
51 |
return_all_scores=True
|
52 |
+
) # Load the sentiment classification model
|
53 |
+
emotion_results = emotion_classifier(user_review)[0] # Get sentiment scores of the input
|
54 |
+
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the highest scoring emotion
|
55 |
+
return dominant_emotion # Return the dominant emotion
|
|
|
|
|
56 |
|
57 |
##########################################
|
58 |
+
# Step 2: Response Generation Functions
|
59 |
##########################################
|
|
|
60 |
def prompt_gen(user_review):
|
61 |
+
"""
|
62 |
+
Generate a prompt based on the user's comment and detected emotion.
|
63 |
+
This function is defined but not used, as the response is fixed.
|
64 |
+
"""
|
65 |
+
dominant_emotion = analyze_dominant_emotion(user_review) # Determine the dominant emotion
|
66 |
+
emotion_strategies = {
|
67 |
+
"anger": {
|
68 |
+
"prompt": (
|
69 |
+
"Customer complaint: '{review}'\n\n"
|
70 |
+
"As a customer service representative, craft a professional response that:\n"
|
71 |
+
"- Begins with sincere apology and acknowledgment\n"
|
72 |
+
"- Clearly explains solution process with concrete steps\n"
|
73 |
+
"- Offers appropriate compensation/redemption\n"
|
74 |
+
"- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
|
75 |
+
"Response:"
|
76 |
+
)
|
77 |
+
},
|
78 |
+
"disgust": {
|
79 |
+
"prompt": (
|
80 |
+
"Customer quality concern: '{review}'\n\n"
|
81 |
+
"As a customer service representative, craft a response that:\n"
|
82 |
+
"- Immediately acknowledges the product issue\n"
|
83 |
+
"- Explains quality control measures being taken\n"
|
84 |
+
"- Provides clear return/replacement instructions\n"
|
85 |
+
"- Offers goodwill gesture (3-4 sentences)\n\n"
|
86 |
+
"Response:"
|
87 |
+
)
|
88 |
+
},
|
89 |
+
"fear": {
|
90 |
+
"prompt": (
|
91 |
+
"Customer safety concern: '{review}'\n\n"
|
92 |
+
"As a customer service representative, craft a reassuring response that:\n"
|
93 |
+
"- Directly addresses the safety worries\n"
|
94 |
+
"- References relevant certifications/standards\n"
|
95 |
+
"- Offers dedicated support contact\n"
|
96 |
+
"- Provides satisfaction guarantee (3-4 sentences)\n\n"
|
97 |
+
"Response:"
|
98 |
+
)
|
99 |
+
},
|
100 |
+
"joy": {
|
101 |
+
"prompt": (
|
102 |
+
"Customer review: '{review}'\n\n"
|
103 |
+
"As a customer service representative, craft a concise response that:\n"
|
104 |
+
"- Specifically acknowledges both positive and constructive feedback\n"
|
105 |
+
"- Briefly mentions loyalty/referral programs\n"
|
106 |
+
"- Ends with shopping invitation (3-4 sentences)\n\n"
|
107 |
+
"Response:"
|
108 |
+
)
|
109 |
+
},
|
110 |
+
"neutral": {
|
111 |
+
"prompt": (
|
112 |
+
"Customer feedback: '{review}'\n\n"
|
113 |
+
"As a customer service representative, craft a balanced response that:\n"
|
114 |
+
"- Provides additional relevant product information\n"
|
115 |
+
"- Highlights key service features\n"
|
116 |
+
"- Politely requests more detailed feedback\n"
|
117 |
+
"- Maintains professional tone (3-4 sentences)\n\n"
|
118 |
+
"Response:"
|
119 |
+
)
|
120 |
+
},
|
121 |
+
"sadness": {
|
122 |
+
"prompt": (
|
123 |
+
"Customer disappointment: '{review}'\n\n"
|
124 |
+
"As a customer service representative, craft an empathetic response that:\n"
|
125 |
+
"- Shows genuine understanding of the issue\n"
|
126 |
+
"- Proposes personalized recovery solution\n"
|
127 |
+
"- Offers extended support options\n"
|
128 |
+
"- Maintains positive outlook (3-4 sentences)\n\n"
|
129 |
+
"Response:"
|
130 |
+
)
|
131 |
+
},
|
132 |
+
"surprise": {
|
133 |
+
"prompt": (
|
134 |
+
"Customer enthusiastic feedback: '{review}'\n\n"
|
135 |
+
"As a customer service representative, craft a response that:\n"
|
136 |
+
"- Matches customer's positive energy appropriately\n"
|
137 |
+
"- Highlights unexpected product benefits\n"
|
138 |
+
"- Invites to user community/events\n"
|
139 |
+
"- Maintains brand voice (3-4 sentences)\n\n"
|
140 |
+
"Response:"
|
141 |
+
)
|
142 |
+
}
|
143 |
+
} # Mapping of each emotion to its response template
|
144 |
+
template = emotion_strategies[dominant_emotion['label'].lower()]["prompt"] # Select template based on emotion
|
145 |
+
prompt = template.format(review=user_review) # Format the template with the user's review
|
146 |
+
print(f"Prompt generated: {prompt}") # Debug: print the generated prompt using an f-string
|
147 |
+
return prompt # Return the constructed prompt
|
148 |
|
149 |
def response_gen(user_review):
|
150 |
+
"""
|
151 |
+
Generate a response based on the user's comment.
|
152 |
+
For this application, always return a fixed response message.
|
153 |
+
"""
|
154 |
+
fixed_response = ("Dear [Customer], I'm sorry to hear that you're experiencing a delay in delivery. "
|
155 |
+
"I understand how frustrating it can be when you're expecting a dress that you love. "
|
156 |
+
"I'd be happy to help you resolve this issue.")
|
157 |
+
print(f"Response generated: {fixed_response}") # Debug: print the generated response using an f-string
|
158 |
+
return fixed_response # Return the fixed response message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
##########################################
|
161 |
# Step 3: Text-to-Speech Conversion Function
|
162 |
##########################################
|
163 |
def sound_gen(response):
|
164 |
"""
|
165 |
+
Convert the fixed response to speech and save it as a .wav file,
|
166 |
+
then embed an auto-playing audio player.
|
167 |
"""
|
168 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # Load the TTS processor
|
169 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Load the TTS model
|
170 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load the vocoder for waveform generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
# Process the full response text (no truncation) for spectrogram generation
|
173 |
+
inputs = processor(text=response, return_tensors="pt") # Tokenize and process the response text for TTS
|
174 |
+
# Use dummy speaker embeddings (zeros) with the expected dimension (1 x 768)
|
175 |
+
speaker_embeddings = torch.zeros(1, 768) # Create placeholder speaker embeddings
|
176 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Generate the speech spectrogram
|
177 |
|
178 |
with torch.no_grad():
|
179 |
+
speech = vocoder(spectrogram) # Convert the spectrogram to an audio waveform using the vocoder
|
180 |
|
181 |
+
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) # Save the waveform as a .wav file
|
182 |
+
st.audio("customer_service_response.wav", start_time=0) # Embed an audio player that autoplays the audio
|
183 |
|
184 |
##########################################
|
185 |
# Main Function
|
186 |
##########################################
|
187 |
def main():
|
188 |
"""
|
189 |
+
The main function orchestrates response generation and text-to-speech conversion.
|
190 |
+
It displays only the fixed response and plays its audio.
|
191 |
"""
|
192 |
+
if text: # Check if the user has entered a comment (although the response is fixed)
|
193 |
+
response = response_gen(text) # Generate the fixed response message
|
194 |
st.markdown(
|
195 |
f"<p style='color:#3498DB; font-size:20px;'>{response}</p>",
|
196 |
unsafe_allow_html=True
|
197 |
+
) # Display the response in styled formatting (only the fixed message is shown)
|
198 |
sound_gen(response) # Convert the response to speech and play it
|
199 |
+
print(f"Final response output: {response}") # Debug: print the final response using an f-string
|
200 |
|
201 |
+
# Execute the main function when the script is run
|
202 |
if __name__ == "__main__":
|
203 |
+
main() # Call the main function
|