Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
import streamlit as st # For building the web application interface
|
5 |
-
import soundfile as sf # For saving audio as .wav files
|
6 |
from transformers import (
|
7 |
pipeline,
|
8 |
SpeechT5Processor,
|
@@ -12,6 +11,9 @@ from transformers import (
|
|
12 |
AutoTokenizer
|
13 |
) # For sentiment analysis, text-to-speech, and text generation
|
14 |
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
##########################################
|
@@ -27,7 +29,7 @@ st.markdown(
|
|
27 |
st.markdown(
|
28 |
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend</h3>",
|
29 |
unsafe_allow_html=True
|
30 |
-
) # Use HTML
|
31 |
|
32 |
# Add a well-designed text area for user input
|
33 |
text = st.text_area(
|
@@ -48,17 +50,17 @@ def analyze_dominant_emotion(user_review):
|
|
48 |
"text-classification",
|
49 |
model="Thea231/jhartmann_emotion_finetuning",
|
50 |
return_all_scores=True
|
51 |
-
) # Load the fine-tuned text classification model
|
52 |
|
53 |
emotion_results = emotion_classifier(user_review)[0] # Perform sentiment analysis on the input text
|
54 |
-
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Identify the emotion with the highest confidence
|
55 |
return dominant_emotion # Return the dominant emotion (label and score)
|
56 |
|
57 |
-
|
58 |
##########################################
|
59 |
# Step 2: Response Generation Function
|
60 |
##########################################
|
61 |
|
|
|
62 |
def response_gen(user_review):
|
63 |
"""
|
64 |
Generate a concise and logical response based on the sentiment of the user's comment.
|
@@ -132,28 +134,28 @@ def response_gen(user_review):
|
|
132 |
)
|
133 |
}
|
134 |
|
135 |
-
# Select the appropriate prompt based on the user's emotion
|
136 |
prompt = emotion_prompts.get(
|
137 |
emotion_label,
|
138 |
f"Neutral feedback: '{user_review}'\n\nWrite a professional and concise response (50-200 words max).\n\nResponse:"
|
139 |
)
|
140 |
|
141 |
# Load the tokenizer and language model for response generation
|
142 |
-
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load tokenizer for
|
143 |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") # Load language model for text generation
|
144 |
|
145 |
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the input prompt
|
146 |
outputs = model.generate(
|
147 |
**inputs,
|
148 |
-
max_new_tokens=300, #
|
149 |
-
min_length=75, #
|
150 |
no_repeat_ngram_size=2, # Avoid repetitive phrases
|
151 |
-
temperature=0.7 # Add randomness for
|
152 |
)
|
153 |
|
154 |
-
# Decode the generated response back into
|
155 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
156 |
-
print(f"{response}") #
|
157 |
return response # Return the generated response
|
158 |
|
159 |
##########################################
|
@@ -163,43 +165,43 @@ def sound_gen(response):
|
|
163 |
"""
|
164 |
Convert the generated response to speech and save it as a .wav file.
|
165 |
"""
|
166 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") #
|
167 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") #
|
168 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") #
|
169 |
|
170 |
-
# Load
|
171 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # Load speaker embeddings
|
172 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Use a default speaker embedding
|
173 |
|
174 |
-
# Process the input text and
|
175 |
inputs = processor(text=response, return_tensors="pt")
|
176 |
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
177 |
|
178 |
-
#
|
179 |
with torch.no_grad():
|
180 |
speech = vocoder(spectrogram)
|
181 |
|
182 |
-
# Save the audio as
|
183 |
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
184 |
|
185 |
-
#
|
186 |
-
st.audio("customer_service_response.wav", start_time=0) #
|
187 |
|
188 |
##########################################
|
189 |
# Main Function
|
190 |
##########################################
|
191 |
def main():
|
192 |
"""
|
193 |
-
Main function to
|
194 |
"""
|
195 |
if text: # Check if the user has entered a comment
|
196 |
-
response = response_gen(text) # Generate a
|
197 |
st.markdown(
|
198 |
f"<p style='color:#2ECC71; font-size:20px;'>{response}</p>",
|
199 |
unsafe_allow_html=True
|
200 |
-
) # Display the
|
201 |
-
sound_gen(response) # Convert the response to speech and
|
202 |
|
203 |
-
#
|
204 |
if __name__ == "__main__":
|
205 |
main()
|
|
|
2 |
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
import streamlit as st # For building the web application interface
|
|
|
5 |
from transformers import (
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
|
|
11 |
AutoTokenizer
|
12 |
) # For sentiment analysis, text-to-speech, and text generation
|
13 |
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
|
14 |
+
import torch # For tensor operations
|
15 |
+
import soundfile as sf # For saving audio as .wav files
|
16 |
+
import sentencepiece # Required by SpeechT5Processor for tokenization
|
17 |
|
18 |
|
19 |
##########################################
|
|
|
29 |
st.markdown(
|
30 |
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend</h3>",
|
31 |
unsafe_allow_html=True
|
32 |
+
) # Use HTML for a friendly and soft-styled subtitle
|
33 |
|
34 |
# Add a well-designed text area for user input
|
35 |
text = st.text_area(
|
|
|
50 |
"text-classification",
|
51 |
model="Thea231/jhartmann_emotion_finetuning",
|
52 |
return_all_scores=True
|
53 |
+
) # Load the fine-tuned text classification model
|
54 |
|
55 |
emotion_results = emotion_classifier(user_review)[0] # Perform sentiment analysis on the input text
|
56 |
+
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Identify the emotion with the highest confidence
|
57 |
return dominant_emotion # Return the dominant emotion (label and score)
|
58 |
|
|
|
59 |
##########################################
|
60 |
# Step 2: Response Generation Function
|
61 |
##########################################
|
62 |
|
63 |
+
|
64 |
def response_gen(user_review):
|
65 |
"""
|
66 |
Generate a concise and logical response based on the sentiment of the user's comment.
|
|
|
134 |
)
|
135 |
}
|
136 |
|
137 |
+
# Select the appropriate prompt based on the user's emotion
|
138 |
prompt = emotion_prompts.get(
|
139 |
emotion_label,
|
140 |
f"Neutral feedback: '{user_review}'\n\nWrite a professional and concise response (50-200 words max).\n\nResponse:"
|
141 |
)
|
142 |
|
143 |
# Load the tokenizer and language model for response generation
|
144 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load tokenizer for text processing
|
145 |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") # Load language model for text generation
|
146 |
|
147 |
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the input prompt
|
148 |
outputs = model.generate(
|
149 |
**inputs,
|
150 |
+
max_new_tokens=300, # Limit generated tokens to ensure concise responses
|
151 |
+
min_length=75, # Ensure the generated response is logical and complete
|
152 |
no_repeat_ngram_size=2, # Avoid repetitive phrases
|
153 |
+
temperature=0.7 # Add randomness for natural-sounding responses
|
154 |
)
|
155 |
|
156 |
+
# Decode the generated response back into text
|
157 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
158 |
+
print(f"Generated response: {response}") # Debugging: print the response
|
159 |
return response # Return the generated response
|
160 |
|
161 |
##########################################
|
|
|
165 |
"""
|
166 |
Convert the generated response to speech and save it as a .wav file.
|
167 |
"""
|
168 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # Load processor for TTS
|
169 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Load pre-trained TTS model
|
170 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load vocoder for waveform generation
|
171 |
|
172 |
+
# Load neutral female voice embedding from dataset
|
173 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # Load speaker embeddings
|
174 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Use a default speaker embedding
|
175 |
|
176 |
+
# Process the input text and generate a spectrogram
|
177 |
inputs = processor(text=response, return_tensors="pt")
|
178 |
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
179 |
|
180 |
+
# Use vocoder to convert the spectrogram into a waveform
|
181 |
with torch.no_grad():
|
182 |
speech = vocoder(spectrogram)
|
183 |
|
184 |
+
# Save the audio file as .wav
|
185 |
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
186 |
|
187 |
+
# Create an auto-playing audio player in Streamlit
|
188 |
+
st.audio("customer_service_response.wav", start_time=0) # Enable audio playback with autoplay
|
189 |
|
190 |
##########################################
|
191 |
# Main Function
|
192 |
##########################################
|
193 |
def main():
|
194 |
"""
|
195 |
+
Main function to handle sentiment analysis, response generation, and text-to-speech functionalities.
|
196 |
"""
|
197 |
if text: # Check if the user has entered a comment
|
198 |
+
response = response_gen(text) # Generate a concise and logical response
|
199 |
st.markdown(
|
200 |
f"<p style='color:#2ECC71; font-size:20px;'>{response}</p>",
|
201 |
unsafe_allow_html=True
|
202 |
+
) # Display the response in a styled font
|
203 |
+
sound_gen(response) # Convert the response to speech and play it
|
204 |
|
205 |
+
# Execute the main function
|
206 |
if __name__ == "__main__":
|
207 |
main()
|