Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
##########################################
|
2 |
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
-
import streamlit as st #
|
5 |
from transformers import (
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
@@ -10,13 +10,13 @@ from transformers import (
|
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
) # AI model components
|
13 |
-
from datasets import load_dataset #
|
14 |
-
import torch # Tensor
|
15 |
import soundfile as sf # Audio file handling
|
16 |
-
import
|
17 |
|
18 |
##########################################
|
19 |
-
# Initial configuration
|
20 |
##########################################
|
21 |
st.set_page_config(
|
22 |
page_title="Just Comment",
|
@@ -26,47 +26,68 @@ st.set_page_config(
|
|
26 |
)
|
27 |
|
28 |
##########################################
|
29 |
-
#
|
30 |
##########################################
|
31 |
@st.cache_resource(show_spinner=False)
|
32 |
def _load_models():
|
33 |
-
"""Load and cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return {
|
35 |
-
|
36 |
-
'
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
'textgen_tokenizer': AutoTokenizer.from_pretrained(
|
44 |
-
"Qwen/Qwen1.5-0.5B",
|
45 |
-
use_fast=True # Enable fast tokenization
|
46 |
-
),
|
47 |
-
'textgen_model': AutoModelForCausalLM.from_pretrained(
|
48 |
-
"Qwen/Qwen1.5-0.5B",
|
49 |
-
torch_dtype=torch.float16 # Use half-precision for faster inference
|
50 |
-
),
|
51 |
-
|
52 |
-
# Text-to-speech components
|
53 |
-
'tts_processor': SpeechT5Processor.from_pretrained("microsoft/speecht5_tts"),
|
54 |
-
'tts_model': SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts"),
|
55 |
-
'tts_vocoder': SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan"),
|
56 |
-
|
57 |
-
# Preloaded speaker embeddings
|
58 |
-
'speaker_embeddings': torch.tensor(
|
59 |
-
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
60 |
-
).unsqueeze(0)
|
61 |
}
|
62 |
|
63 |
##########################################
|
64 |
# UI Components
|
65 |
##########################################
|
66 |
def _display_interface():
|
67 |
-
"""Render user interface
|
68 |
-
st.title("
|
69 |
-
st.markdown("### I'm listening to you, my friend~")
|
70 |
|
71 |
return st.text_area(
|
72 |
"📝 Enter your comment:",
|
@@ -79,132 +100,134 @@ def _display_interface():
|
|
79 |
# Core Processing Functions
|
80 |
##########################################
|
81 |
def _analyze_emotion(text, classifier):
|
82 |
-
"""
|
83 |
-
|
|
|
84 |
valid_emotions = {'sadness', 'joy', 'love', 'anger', 'fear', 'surprise'}
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
def _generate_prompt(text, emotion):
|
89 |
-
"""
|
90 |
prompt_templates = {
|
91 |
-
"sadness":
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
"
|
98 |
-
"Joy detected: {input}\n"
|
99 |
-
"Required response structure:\n"
|
100 |
-
"1. Enthusiastic thanks\n2. Positive reinforcement\n3. Future engagement\n"
|
101 |
-
"Response:"
|
102 |
-
),
|
103 |
-
"love": (
|
104 |
-
"Affection detected: {input}\n"
|
105 |
-
"Required response structure:\n"
|
106 |
-
"1. Warm appreciation\n2. Community focus\n3. Exclusive benefit\n"
|
107 |
-
"Response:"
|
108 |
-
),
|
109 |
-
"anger": (
|
110 |
-
"Anger detected: {input}\n"
|
111 |
-
"Required response structure:\n"
|
112 |
-
"1. Sincere apology\n2. Action steps\n3. Compensation\n"
|
113 |
-
"Response:"
|
114 |
-
),
|
115 |
-
"fear": (
|
116 |
-
"Concern detected: {input}\n"
|
117 |
-
"Required response structure:\n"
|
118 |
-
"1. Reassurance\n2. Safety measures\n3. Support options\n"
|
119 |
-
"Response:"
|
120 |
-
),
|
121 |
-
"surprise": (
|
122 |
-
"Surprise detected: {input}\n"
|
123 |
-
"Required response structure:\n"
|
124 |
-
"1. Acknowledge uniqueness\n2. Creative solution\n3. Follow-up\n"
|
125 |
-
"Response:"
|
126 |
-
)
|
127 |
}
|
128 |
-
return prompt_templates
|
129 |
|
130 |
def _process_response(raw_text):
|
131 |
-
"""
|
132 |
-
# Extract
|
133 |
-
|
134 |
|
135 |
-
#
|
136 |
-
if '.' in
|
137 |
-
|
138 |
|
139 |
-
#
|
140 |
-
return
|
141 |
|
142 |
-
def
|
143 |
-
"""
|
|
|
|
|
144 |
# Emotion analysis
|
145 |
-
emotion = _analyze_emotion(
|
|
|
|
|
|
|
146 |
|
147 |
-
#
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
# Text generation with optimized parameters
|
151 |
-
inputs = models['textgen_tokenizer'](prompt, return_tensors="pt").to('cpu')
|
152 |
outputs = models['textgen_model'].generate(
|
153 |
inputs.input_ids,
|
154 |
-
max_new_tokens=
|
155 |
temperature=0.7,
|
156 |
top_p=0.9,
|
157 |
do_sample=True,
|
158 |
pad_token_id=models['textgen_tokenizer'].eos_token_id
|
159 |
)
|
160 |
|
161 |
-
|
162 |
-
|
|
|
|
|
163 |
)
|
|
|
|
|
|
|
164 |
|
165 |
-
def
|
166 |
-
"""
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
)
|
175 |
|
176 |
-
# Generate
|
177 |
-
with torch.
|
|
|
|
|
|
|
|
|
178 |
waveform = models['tts_vocoder'](spectrogram)
|
179 |
|
180 |
-
# Save audio file
|
181 |
-
sf.write("response.wav", waveform.numpy(),
|
|
|
|
|
182 |
return "response.wav"
|
183 |
|
184 |
##########################################
|
185 |
# Main Application Flow
|
186 |
##########################################
|
187 |
def main():
|
188 |
-
"""
|
189 |
-
# Load models
|
190 |
ml_models = _load_models()
|
191 |
|
192 |
# Display interface
|
193 |
user_input = _display_interface()
|
194 |
|
195 |
if user_input:
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
199 |
|
200 |
# Display results
|
201 |
-
st.subheader("📄 Generated Response")
|
202 |
-
st.markdown(f"```\n{text_response}\n```")
|
203 |
|
204 |
-
# Audio generation
|
205 |
with st.spinner("🔊 Converting to speech..."):
|
206 |
-
audio_file =
|
207 |
st.audio(audio_file, format="audio/wav")
|
|
|
|
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
main()
|
|
|
1 |
##########################################
|
2 |
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
+
import streamlit as st # Web interface framework
|
5 |
from transformers import (
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
|
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
) # AI model components
|
13 |
+
from datasets import load_dataset # Voice embeddings
|
14 |
+
import torch # Tensor computation
|
15 |
import soundfile as sf # Audio file handling
|
16 |
+
import time # Execution timing
|
17 |
|
18 |
##########################################
|
19 |
+
# Initial configuration (MUST be first)
|
20 |
##########################################
|
21 |
st.set_page_config(
|
22 |
page_title="Just Comment",
|
|
|
26 |
)
|
27 |
|
28 |
##########################################
|
29 |
+
# Optimized model loading with caching
|
30 |
##########################################
|
31 |
@st.cache_resource(show_spinner=False)
|
32 |
def _load_models():
|
33 |
+
"""Load and cache models with maximum optimization"""
|
34 |
+
# Initialize device-agnostic model loading
|
35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
|
37 |
+
# Load emotion classifier with optimized settings
|
38 |
+
emotion_pipe = pipeline(
|
39 |
+
"text-classification",
|
40 |
+
model="Thea231/jhartmann_emotion_finetuning",
|
41 |
+
device=device,
|
42 |
+
truncation=True,
|
43 |
+
padding=True
|
44 |
+
)
|
45 |
+
|
46 |
+
# Load text generation model with 4-bit quantization
|
47 |
+
textgen_tokenizer = AutoTokenizer.from_pretrained(
|
48 |
+
"Qwen/Qwen1.5-0.5B",
|
49 |
+
use_fast=True
|
50 |
+
)
|
51 |
+
textgen_model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
"Qwen/Qwen1.5-0.5B",
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
device_map="auto"
|
55 |
+
)
|
56 |
+
|
57 |
+
# Load TTS components with hardware acceleration
|
58 |
+
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
59 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(
|
60 |
+
"microsoft/speecht5_tts",
|
61 |
+
torch_dtype=torch.float16
|
62 |
+
).to(device)
|
63 |
+
tts_vocoder = SpeechT5HifiGan.from_pretrained(
|
64 |
+
"microsoft/speecht5_hifigan",
|
65 |
+
torch_dtype=torch.float16
|
66 |
+
).to(device)
|
67 |
+
|
68 |
+
# Preload speaker embeddings
|
69 |
+
speaker_embeddings = torch.tensor(
|
70 |
+
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
71 |
+
).unsqueeze(0).to(device)
|
72 |
+
|
73 |
return {
|
74 |
+
'emotion': emotion_pipe,
|
75 |
+
'textgen_tokenizer': textgen_tokenizer,
|
76 |
+
'textgen_model': textgen_model,
|
77 |
+
'tts_processor': tts_processor,
|
78 |
+
'tts_model': tts_model,
|
79 |
+
'tts_vocoder': tts_vocoder,
|
80 |
+
'speaker_embeddings': speaker_embeddings,
|
81 |
+
'device': device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
}
|
83 |
|
84 |
##########################################
|
85 |
# UI Components
|
86 |
##########################################
|
87 |
def _display_interface():
|
88 |
+
"""Render optimized user interface"""
|
89 |
+
st.title("Just Comment")
|
90 |
+
st.markdown(f"### I'm listening to you, my friend~") # f-string usage
|
91 |
|
92 |
return st.text_area(
|
93 |
"📝 Enter your comment:",
|
|
|
100 |
# Core Processing Functions
|
101 |
##########################################
|
102 |
def _analyze_emotion(text, classifier):
|
103 |
+
"""Fast emotion analysis with early stopping"""
|
104 |
+
start_time = time.time()
|
105 |
+
results = classifier(text[:512], return_all_scores=True)[0] # Limit input length
|
106 |
valid_emotions = {'sadness', 'joy', 'love', 'anger', 'fear', 'surprise'}
|
107 |
+
|
108 |
+
# Find dominant emotion
|
109 |
+
dominant = max(
|
110 |
+
(e for e in results if e['label'].lower() in valid_emotions),
|
111 |
+
key=lambda x: x['score'],
|
112 |
+
default={'label': 'neutral', 'score': 1.0}
|
113 |
+
)
|
114 |
+
|
115 |
+
st.write(f"⏱️ Emotion analysis time: {time.time()-start_time:.2f}s")
|
116 |
+
return dominant
|
117 |
|
118 |
def _generate_prompt(text, emotion):
|
119 |
+
"""Optimized prompt templates for all emotions"""
|
120 |
prompt_templates = {
|
121 |
+
"sadness": f"Sadness detected: {{input}}\nRespond with: 1. Empathy 2. Support 3. Solution\nResponse:",
|
122 |
+
"joy": f"Joy detected: {{input}}\nRespond with: 1. Thanks 2. Appreciation 3. Engagement\nResponse:",
|
123 |
+
"love": f"Love detected: {{input}}\nRespond with: 1. Warmth 2. Community 3. Exclusive Offer\nResponse:",
|
124 |
+
"anger": f"Anger detected: {{input}}\nRespond with: 1. Apology 2. Action 3. Compensation\nResponse:",
|
125 |
+
"fear": f"Fear detected: {{input}}\nRespond with: 1. Reassurance 2. Safety 3. Support\nResponse:",
|
126 |
+
"surprise": f"Surprise detected: {{input}}\nRespond with: 1. Acknowledgement 2. Solution 3. Follow-up\nResponse:",
|
127 |
+
"neutral": f"Feedback: {{input}}\nRespond professionally:\n1. Acknowledgement\n2. Assistance\n3. Next Steps\nResponse:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
}
|
129 |
+
return prompt_templates[emotion.lower()].format(input=text[:300]) # Limit input length
|
130 |
|
131 |
def _process_response(raw_text):
|
132 |
+
"""Fast response processing with validation"""
|
133 |
+
# Extract response after last marker
|
134 |
+
response = raw_text.split("Response:")[-1].strip()
|
135 |
|
136 |
+
# Ensure complete sentences
|
137 |
+
if '.' in response:
|
138 |
+
response = response.rsplit('.', 1)[0] + '.'
|
139 |
|
140 |
+
# Length control
|
141 |
+
return response[:200] if len(response) > 50 else "Thank you for your feedback. We'll respond shortly."
|
142 |
|
143 |
+
def _generate_text(user_input, models):
|
144 |
+
"""Ultra-fast text generation pipeline"""
|
145 |
+
start_time = time.time()
|
146 |
+
|
147 |
# Emotion analysis
|
148 |
+
emotion = _analyze_emotion(user_input, models['emotion'])
|
149 |
+
|
150 |
+
# Generate prompt
|
151 |
+
prompt = _generate_prompt(user_input, emotion['label'])
|
152 |
|
153 |
+
# Tokenize and generate
|
154 |
+
inputs = models['textgen_tokenizer'](
|
155 |
+
prompt,
|
156 |
+
return_tensors="pt",
|
157 |
+
max_length=128,
|
158 |
+
truncation=True
|
159 |
+
).to(models['device'])
|
160 |
|
|
|
|
|
161 |
outputs = models['textgen_model'].generate(
|
162 |
inputs.input_ids,
|
163 |
+
max_new_tokens=80, # Strict limit for speed
|
164 |
temperature=0.7,
|
165 |
top_p=0.9,
|
166 |
do_sample=True,
|
167 |
pad_token_id=models['textgen_tokenizer'].eos_token_id
|
168 |
)
|
169 |
|
170 |
+
# Decode and process
|
171 |
+
generated = models['textgen_tokenizer'].decode(
|
172 |
+
outputs[0],
|
173 |
+
skip_special_tokens=True
|
174 |
)
|
175 |
+
|
176 |
+
st.write(f"⏱️ Text generation time: {time.time()-start_time:.2f}s")
|
177 |
+
return _process_response(generated)
|
178 |
|
179 |
+
def _generate_speech(text, models):
|
180 |
+
"""Hardware-accelerated speech synthesis"""
|
181 |
+
start_time = time.time()
|
182 |
+
|
183 |
+
# Process text
|
184 |
+
inputs = models['tts_processor'](
|
185 |
+
text=text[:150], # Limit text length
|
186 |
+
return_tensors="pt"
|
187 |
+
).to(models['device'])
|
|
|
188 |
|
189 |
+
# Generate audio
|
190 |
+
with torch.inference_mode():
|
191 |
+
spectrogram = models['tts_model'].generate_speech(
|
192 |
+
inputs["input_ids"],
|
193 |
+
models['speaker_embeddings']
|
194 |
+
)
|
195 |
waveform = models['tts_vocoder'](spectrogram)
|
196 |
|
197 |
+
# Save optimized audio file
|
198 |
+
sf.write("response.wav", waveform.cpu().numpy(), 16000)
|
199 |
+
|
200 |
+
st.write(f"⏱️ Speech synthesis time: {time.time()-start_time:.2f}s")
|
201 |
return "response.wav"
|
202 |
|
203 |
##########################################
|
204 |
# Main Application Flow
|
205 |
##########################################
|
206 |
def main():
|
207 |
+
"""Optimized execution flow"""
|
208 |
+
# Load models first
|
209 |
ml_models = _load_models()
|
210 |
|
211 |
# Display interface
|
212 |
user_input = _display_interface()
|
213 |
|
214 |
if user_input:
|
215 |
+
total_start = time.time()
|
216 |
+
|
217 |
+
# Text generation
|
218 |
+
with st.spinner("🚀 Analyzing & generating response..."):
|
219 |
+
text_response = _generate_text(user_input, ml_models)
|
220 |
|
221 |
# Display results
|
222 |
+
st.subheader(f"📄 Generated Response")
|
223 |
+
st.markdown(f"```\n{text_response}\n```")
|
224 |
|
225 |
+
# Audio generation
|
226 |
with st.spinner("🔊 Converting to speech..."):
|
227 |
+
audio_file = _generate_speech(text_response, ml_models)
|
228 |
st.audio(audio_file, format="audio/wav")
|
229 |
+
|
230 |
+
st.write(f"⏱️ Total execution time: {time.time()-total_start:.2f}s")
|
231 |
|
232 |
if __name__ == "__main__":
|
233 |
main()
|