Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,15 @@ import torch # Tensor operations
|
|
15 |
import soundfile as sf # Audio file handling
|
16 |
import sentencepiece # Tokenization dependency
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
##########################################
|
19 |
# Initialize models and resources globally
|
20 |
##########################################
|
@@ -40,8 +49,7 @@ def load_models():
|
|
40 |
# Streamlit UI Configuration
|
41 |
##########################################
|
42 |
def setup_ui():
|
43 |
-
"""Configure
|
44 |
-
st.set_page_config(page_title="๐ Just Comment", page_icon="๐ฌ")
|
45 |
st.title("๐ Just Comment - Smart Response Generator")
|
46 |
st.markdown("""
|
47 |
<style>
|
@@ -52,78 +60,9 @@ def setup_ui():
|
|
52 |
return st.text_area("๐ Enter your customer comment:", "", height=150)
|
53 |
|
54 |
##########################################
|
55 |
-
#
|
56 |
-
|
57 |
-
def analyze_emotion(text, classifier):
|
58 |
-
"""Determine dominant emotion with confidence threshold"""
|
59 |
-
results = classifier(text, return_all_scores=True)[0]
|
60 |
-
top_emotion = max(results, key=lambda x: x['score'])
|
61 |
-
return top_emotion if top_emotion['score'] > 0.6 else {'label': 'neutral', 'score': 1.0}
|
62 |
-
|
63 |
-
##########################################
|
64 |
-
# Improved Response Generation
|
65 |
-
##########################################
|
66 |
-
def generate_response(text, models):
|
67 |
-
"""Generate context-appropriate response with length control"""
|
68 |
-
emotion = analyze_emotion(text, models['emotion_classifier'])
|
69 |
-
prompt = create_prompt(text, emotion['label'].lower())
|
70 |
-
|
71 |
-
inputs = models['textgen_tokenizer'](prompt, return_tensors="pt")
|
72 |
-
outputs = models['textgen_model'].generate(
|
73 |
-
**inputs,
|
74 |
-
max_new_tokens=200, # Increased for longer responses
|
75 |
-
temperature=0.7, # Balance creativity and focus
|
76 |
-
do_sample=True,
|
77 |
-
top_p=0.9,
|
78 |
-
no_repeat_ngram_size=2
|
79 |
-
)
|
80 |
-
|
81 |
-
response = models['textgen_tokenizer'].decode(
|
82 |
-
outputs[0][inputs.input_ids.shape[1]:],
|
83 |
-
skip_special_tokens=True
|
84 |
-
)
|
85 |
-
return postprocess_response(response)
|
86 |
-
|
87 |
-
def create_prompt(text, emotion):
|
88 |
-
"""Create emotion-specific prompts with structured guidance"""
|
89 |
-
templates = {
|
90 |
-
"anger": (
|
91 |
-
"Complaint: {input}\nRespond by:\n1. Apologizing sincerely\n"
|
92 |
-
"2. Proving solution steps\n3. Offering compensation\nResponse:"
|
93 |
-
),
|
94 |
-
"joy": (
|
95 |
-
"Positive feedback: {input}\nRespond by:\n1. Thanking customer\n"
|
96 |
-
"2. Highlighting strengths\n3. Suggesting rewards\nResponse:"
|
97 |
-
),
|
98 |
-
# Add other emotion templates...
|
99 |
-
"neutral": (
|
100 |
-
"Feedback: {input}\nRespond by:\n1. Acknowledging input\n"
|
101 |
-
"2. Providing information\n3. Requesting details\nResponse:"
|
102 |
-
)
|
103 |
-
}
|
104 |
-
return templates.get(emotion, templates['neutral']).format(input=text)
|
105 |
-
|
106 |
-
def postprocess_response(text):
|
107 |
-
"""Ensure response quality and length"""
|
108 |
-
text = text.split("\n\n")[0].strip() # Take first complete response
|
109 |
-
if len(text) < 50: # Minimum length check
|
110 |
-
return "Thank you for your feedback. We'll carefully review your comments and follow up shortly."
|
111 |
-
return text[:300] # Hard length limit
|
112 |
-
|
113 |
-
##########################################
|
114 |
-
# Optimized Text-to-Speech
|
115 |
##########################################
|
116 |
-
def generate_speech(text, models):
|
117 |
-
"""Convert text to speech with performance optimizations"""
|
118 |
-
inputs = models['tts_processor'](text=text, return_tensors="pt")
|
119 |
-
spectrogram = models['tts_model'].generate_speech(
|
120 |
-
inputs["input_ids"],
|
121 |
-
models['speaker_embeddings']
|
122 |
-
)
|
123 |
-
with torch.no_grad():
|
124 |
-
audio = models['tts_vocoder'](spectrogram)
|
125 |
-
sf.write("response.wav", audio.numpy(), 16000)
|
126 |
-
return "response.wav"
|
127 |
|
128 |
##########################################
|
129 |
# Main Application Logic
|
|
|
15 |
import soundfile as sf # Audio file handling
|
16 |
import sentencepiece # Tokenization dependency
|
17 |
|
18 |
+
##########################################
|
19 |
+
# Set page config FIRST
|
20 |
+
##########################################
|
21 |
+
st.set_page_config( # Must be the first Streamlit command
|
22 |
+
page_title="๐ Just Comment - I'm listening to you, my friend๏ฝ",
|
23 |
+
page_icon="๐ฌ",
|
24 |
+
layout="centered"
|
25 |
+
)
|
26 |
+
|
27 |
##########################################
|
28 |
# Initialize models and resources globally
|
29 |
##########################################
|
|
|
49 |
# Streamlit UI Configuration
|
50 |
##########################################
|
51 |
def setup_ui():
|
52 |
+
"""Configure remaining UI elements"""
|
|
|
53 |
st.title("๐ Just Comment - Smart Response Generator")
|
54 |
st.markdown("""
|
55 |
<style>
|
|
|
60 |
return st.text_area("๐ Enter your customer comment:", "", height=150)
|
61 |
|
62 |
##########################################
|
63 |
+
# (ไฟๆๅ
ถไปๅฝๆฐไธๅ๏ผไธไนๅ็ธๅ)
|
64 |
+
# Keep other functions unchanged as previous version
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
##########################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
##########################################
|
68 |
# Main Application Logic
|