Spaces:
Sleeping
Sleeping
########################################## | |
# Step 0: Import required libraries | |
########################################## | |
import streamlit as st # For web interface | |
from transformers import ( | |
pipeline, # For loading pre-trained models | |
SpeechT5Processor, # For text-to-speech processing | |
SpeechT5ForTextToSpeech, # TTS model | |
SpeechT5HifiGan, # Vocoder for generating audio waveforms | |
AutoModelForCausalLM, # For text generation | |
AutoTokenizer # For tokenizing input text | |
) # AI model components | |
from datasets import load_dataset # To load voice embeddings | |
import torch # For tensor computations | |
import soundfile as sf # For handling audio files | |
import re # For regular expressions in text processing | |
########################################## | |
# Initial configuration | |
########################################## | |
st.set_page_config( | |
page_title="Just Comment", # Title of the web app | |
page_icon="💬", # Icon displayed in the browser tab | |
layout="centered", # Center the layout of the app | |
initial_sidebar_state="collapsed" # Start with sidebar collapsed | |
) | |
########################################## | |
# Global model loading with caching | |
########################################## | |
# Cache the models for performance | |
def _load_models(): | |
"""Load and cache all ML models with optimized settings""" | |
return { | |
# Emotion classification pipeline | |
'emotion': pipeline( | |
"text-classification", # Specify task type | |
model="Thea231/jhartmann_emotion_finetuning", # Load the model | |
truncation=True # Enable text truncation for long inputs | |
), | |
# Text generation components | |
'textgen_tokenizer': AutoTokenizer.from_pretrained( | |
"Qwen/Qwen1.5-0.5B", # Load tokenizer | |
use_fast=True # Enable fast tokenization | |
), | |
'textgen_model': AutoModelForCausalLM.from_pretrained( | |
"Qwen/Qwen1.5-0.5B", # Load text generation model | |
torch_dtype=torch.float16 # Use half-precision for faster inference | |
), | |
# Text-to-speech components | |
'tts_processor': SpeechT5Processor.from_pretrained("microsoft/speecht5_tts"), # Load TTS processor | |
'tts_model': SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts"), # Load TTS model | |
'tts_vocoder': SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan"), # Load vocoder | |
# Preloaded speaker embeddings | |
'speaker_embeddings': torch.tensor( | |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"] # Load speaker embeddings | |
).unsqueeze(0) # Add an additional dimension for batch processing | |
} | |
########################################## | |
# UI Components | |
########################################## | |
def _display_interface(): | |
"""Render user interface elements""" | |
st.title("Just Comment") # Set the main title of the app | |
st.markdown("### I'm listening to you, my friend~") # Subheading for user interaction | |
return st.text_area( | |
"📝 Enter your comment:", # Label for the text area | |
placeholder="Type your message here...", # Placeholder text | |
height=150, # Height of the text area | |
key="user_input" # Unique key for the text area | |
) | |
########################################## | |
# Core Processing Functions | |
########################################## | |
def _analyze_emotion(text, classifier): | |
"""Identify dominant emotion with confidence threshold""" | |
results = classifier(text, return_all_scores=True)[0] # Get emotion scores | |
valid_emotions = {'sadness', 'joy', 'love', 'anger', 'fear', 'surprise'} # Define valid emotions | |
filtered = [e for e in results if e['label'].lower() in valid_emotions] # Filter results by valid emotions | |
return max(filtered, key=lambda x: x['score']) # Return the emotion with the highest score | |
def _generate_prompt(text, emotion): | |
"""Create structured prompts for all emotion types""" | |
prompt_templates = { | |
"sadness": ( | |
"Sadness detected: {input}\n" | |
"Required response structure:\n" | |
"1. Empathetic acknowledgment\n2. Support offer\n3. Solution proposal\n" | |
"Response:" | |
), | |
"joy": ( | |
"Joy detected: {input}\n" | |
"Required response structure:\n" | |
"1. Enthusiastic thanks\n2. Positive reinforcement\n3. Future engagement\n" | |
"Response:" | |
), | |
"love": ( | |
"Affection detected: {input}\n" | |
"Required response structure:\n" | |
"1. Warm appreciation\n2. Community focus\n3. Exclusive benefit\n" | |
"Response:" | |
), | |
"anger": ( | |
"Anger detected: {input}\n" | |
"Required response structure:\n" | |
"1. Sincere apology\n2. Action steps\n3. Compensation\n" | |
"Response:" | |
), | |
"fear": ( | |
"Concern detected: {input}\n" | |
"Required response structure:\n" | |
"1. Reassurance\n2. Safety measures\n3. Support options\n" | |
"Response:" | |
), | |
"surprise": ( | |
"Surprise detected: {input}\n" | |
"Required response structure:\n" | |
"1. Acknowledge uniqueness\n2. Creative solution\n3. Follow-up\n" | |
"Response:" | |
) | |
} | |
return prompt_templates.get(emotion.lower(), "").format(input=text) # Format and return the appropriate prompt | |
def _process_response(raw_text): | |
"""Clean and format the generated response""" | |
# Extract text after last "Response:" marker | |
processed = raw_text.split("Response:")[-1].strip() | |
# Remove incomplete sentences | |
if '.' in processed: | |
processed = processed.rsplit('.', 1)[0] + '.' # Ensure the response ends with a period | |
# Ensure length between 50-200 characters | |
return processed[:200].strip() if len(processed) > 50 else "Thank you for your feedback. We value your input and will respond shortly." | |
def _generate_text_response(input_text, models): | |
"""Generate optimized text response with timing controls""" | |
# Emotion analysis | |
emotion = _analyze_emotion(input_text, models['emotion']) # Analyze the emotion of user input | |
# Prompt engineering | |
prompt = _generate_prompt(input_text, emotion['label']) # Generate prompt based on detected emotion | |
# Text generation with optimized parameters | |
inputs = models['textgen_tokenizer'](prompt, return_tensors="pt").to('cpu') # Tokenize the prompt | |
outputs = models['textgen_model'].generate( | |
inputs.input_ids, # Input token IDs | |
max_new_tokens=100, # Strict token limit for response length | |
temperature=0.7, # Control randomness in text generation | |
top_p=0.9, # Control diversity in sampling | |
do_sample=True, # Enable sampling to generate varied responses | |
pad_token_id=models['textgen_tokenizer'].eos_token_id # Use end-of-sequence token for padding | |
) | |
return _process_response( | |
models['textgen_tokenizer'].decode(outputs[0], skip_special_tokens=True) # Decode and process the response | |
) | |
def _generate_audio_response(text, models): | |
"""Convert text to speech with performance optimizations""" | |
# Process text input for TTS | |
inputs = models['tts_processor'](text=text, return_tensors="pt") # Tokenize input text for TTS | |
# Generate spectrogram | |
spectrogram = models['tts_model'].generate_speech( | |
inputs["input_ids"], # Input token IDs for TTS | |
models['speaker_embeddings'] # Use preloaded speaker embeddings | |
) | |
# Generate waveform with optimizations | |
with torch.no_grad(): # Disable gradient calculation for inference | |
waveform = models['tts_vocoder'](spectrogram) # Generate audio waveform from spectrogram | |
# Save audio file | |
sf.write("response.wav", waveform.numpy(), samplerate=16000) # Save waveform as a WAV file | |
return "response.wav" # Return the path to the saved audio file | |
########################################## | |
# Main Application Flow | |
########################################## | |
def main(): | |
"""Primary execution flow""" | |
# Load models once | |
ml_models = _load_models() # Load all models and cache them | |
# Display interface | |
user_input = _display_interface() # Show the user input interface | |
if user_input: # Check if user has entered input | |
# Text generation stage | |
with st.spinner("🔍 Analyzing emotions and generating response..."): # Show loading spinner | |
text_response = _generate_text_response(user_input, ml_models) # Generate text response | |
# Display results | |
st.subheader("📄 Generated Response") # Subheader for response section | |
st.markdown(f"```\n{text_response}\n```") # Display generated response in markdown format | |
# Audio generation stage | |
with st.spinner("🔊 Converting to speech..."): # Show loading spinner | |
audio_file = _generate_audio_response(text_response, ml_models) # Generate audio response | |
st.audio(audio_file, format="audio/wav") # Play audio file in the app | |
if __name__ == "__main__": | |
main() # Execute the main function when the script is run |