Comment_Reply / app.py
joey1101's picture
Update app.py
37b0c44 verified
##########################################
# Step 0: Import required libraries
##########################################
import streamlit as st # For web interface
from transformers import (
pipeline, # For loading pre-trained models
SpeechT5Processor, # For text-to-speech processing
SpeechT5ForTextToSpeech, # TTS model
SpeechT5HifiGan, # Vocoder for generating audio waveforms
AutoModelForCausalLM, # For text generation
AutoTokenizer # For tokenizing input text
) # AI model components
from datasets import load_dataset # To load voice embeddings
import torch # For tensor computations
import soundfile as sf # For handling audio files
import re # For regular expressions in text processing
##########################################
# Initial configuration
##########################################
st.set_page_config(
page_title="Just Comment", # Title of the web app
page_icon="💬", # Icon displayed in the browser tab
layout="centered", # Center the layout of the app
initial_sidebar_state="collapsed" # Start with sidebar collapsed
)
##########################################
# Global model loading with caching
##########################################
@st.cache_resource(show_spinner=False) # Cache the models for performance
def _load_models():
"""Load and cache all ML models with optimized settings"""
return {
# Emotion classification pipeline
'emotion': pipeline(
"text-classification", # Specify task type
model="Thea231/jhartmann_emotion_finetuning", # Load the model
truncation=True # Enable text truncation for long inputs
),
# Text generation components
'textgen_tokenizer': AutoTokenizer.from_pretrained(
"Qwen/Qwen1.5-0.5B", # Load tokenizer
use_fast=True # Enable fast tokenization
),
'textgen_model': AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-0.5B", # Load text generation model
torch_dtype=torch.float16 # Use half-precision for faster inference
),
# Text-to-speech components
'tts_processor': SpeechT5Processor.from_pretrained("microsoft/speecht5_tts"), # Load TTS processor
'tts_model': SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts"), # Load TTS model
'tts_vocoder': SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan"), # Load vocoder
# Preloaded speaker embeddings
'speaker_embeddings': torch.tensor(
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"] # Load speaker embeddings
).unsqueeze(0) # Add an additional dimension for batch processing
}
##########################################
# UI Components
##########################################
def _display_interface():
"""Render user interface elements"""
st.title("Just Comment") # Set the main title of the app
st.markdown("### I'm listening to you, my friend~") # Subheading for user interaction
return st.text_area(
"📝 Enter your comment:", # Label for the text area
placeholder="Type your message here...", # Placeholder text
height=150, # Height of the text area
key="user_input" # Unique key for the text area
)
##########################################
# Core Processing Functions
##########################################
def _analyze_emotion(text, classifier):
"""Identify dominant emotion with confidence threshold"""
results = classifier(text, return_all_scores=True)[0] # Get emotion scores
valid_emotions = {'sadness', 'joy', 'love', 'anger', 'fear', 'surprise'} # Define valid emotions
filtered = [e for e in results if e['label'].lower() in valid_emotions] # Filter results by valid emotions
return max(filtered, key=lambda x: x['score']) # Return the emotion with the highest score
def _generate_prompt(text, emotion):
"""Create structured prompts for all emotion types"""
prompt_templates = {
"sadness": (
"Sadness detected: {input}\n"
"Required response structure:\n"
"1. Empathetic acknowledgment\n2. Support offer\n3. Solution proposal\n"
"Response:"
),
"joy": (
"Joy detected: {input}\n"
"Required response structure:\n"
"1. Enthusiastic thanks\n2. Positive reinforcement\n3. Future engagement\n"
"Response:"
),
"love": (
"Affection detected: {input}\n"
"Required response structure:\n"
"1. Warm appreciation\n2. Community focus\n3. Exclusive benefit\n"
"Response:"
),
"anger": (
"Anger detected: {input}\n"
"Required response structure:\n"
"1. Sincere apology\n2. Action steps\n3. Compensation\n"
"Response:"
),
"fear": (
"Concern detected: {input}\n"
"Required response structure:\n"
"1. Reassurance\n2. Safety measures\n3. Support options\n"
"Response:"
),
"surprise": (
"Surprise detected: {input}\n"
"Required response structure:\n"
"1. Acknowledge uniqueness\n2. Creative solution\n3. Follow-up\n"
"Response:"
)
}
return prompt_templates.get(emotion.lower(), "").format(input=text) # Format and return the appropriate prompt
def _process_response(raw_text):
"""Clean and format the generated response"""
# Extract text after last "Response:" marker
processed = raw_text.split("Response:")[-1].strip()
# Remove incomplete sentences
if '.' in processed:
processed = processed.rsplit('.', 1)[0] + '.' # Ensure the response ends with a period
# Ensure length between 50-200 characters
return processed[:200].strip() if len(processed) > 50 else "Thank you for your feedback. We value your input and will respond shortly."
def _generate_text_response(input_text, models):
"""Generate optimized text response with timing controls"""
# Emotion analysis
emotion = _analyze_emotion(input_text, models['emotion']) # Analyze the emotion of user input
# Prompt engineering
prompt = _generate_prompt(input_text, emotion['label']) # Generate prompt based on detected emotion
# Text generation with optimized parameters
inputs = models['textgen_tokenizer'](prompt, return_tensors="pt").to('cpu') # Tokenize the prompt
outputs = models['textgen_model'].generate(
inputs.input_ids, # Input token IDs
max_new_tokens=100, # Strict token limit for response length
temperature=0.7, # Control randomness in text generation
top_p=0.9, # Control diversity in sampling
do_sample=True, # Enable sampling to generate varied responses
pad_token_id=models['textgen_tokenizer'].eos_token_id # Use end-of-sequence token for padding
)
return _process_response(
models['textgen_tokenizer'].decode(outputs[0], skip_special_tokens=True) # Decode and process the response
)
def _generate_audio_response(text, models):
"""Convert text to speech with performance optimizations"""
# Process text input for TTS
inputs = models['tts_processor'](text=text, return_tensors="pt") # Tokenize input text for TTS
# Generate spectrogram
spectrogram = models['tts_model'].generate_speech(
inputs["input_ids"], # Input token IDs for TTS
models['speaker_embeddings'] # Use preloaded speaker embeddings
)
# Generate waveform with optimizations
with torch.no_grad(): # Disable gradient calculation for inference
waveform = models['tts_vocoder'](spectrogram) # Generate audio waveform from spectrogram
# Save audio file
sf.write("response.wav", waveform.numpy(), samplerate=16000) # Save waveform as a WAV file
return "response.wav" # Return the path to the saved audio file
##########################################
# Main Application Flow
##########################################
def main():
"""Primary execution flow"""
# Load models once
ml_models = _load_models() # Load all models and cache them
# Display interface
user_input = _display_interface() # Show the user input interface
if user_input: # Check if user has entered input
# Text generation stage
with st.spinner("🔍 Analyzing emotions and generating response..."): # Show loading spinner
text_response = _generate_text_response(user_input, ml_models) # Generate text response
# Display results
st.subheader("📄 Generated Response") # Subheader for response section
st.markdown(f"```\n{text_response}\n```") # Display generated response in markdown format
# Audio generation stage
with st.spinner("🔊 Converting to speech..."): # Show loading spinner
audio_file = _generate_audio_response(text_response, ml_models) # Generate audio response
st.audio(audio_file, format="audio/wav") # Play audio file in the app
if __name__ == "__main__":
main() # Execute the main function when the script is run