Comment_Reply / app.py
joey1101's picture
Update app.py
e4cf4e2 verified
raw
history blame
5.62 kB
##########################################
# Step 0: Import required libraries
##########################################
import streamlit as st # For building the web application
from transformers import (
pipeline,
SpeechT5Processor,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
AutoModelForCausalLM,
AutoTokenizer
) # For emotion analysis, text-to-speech, and text generation
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
import torch # For tensor operations
import soundfile as sf # For saving audio as .wav files
##########################################
# Streamlit application title and input
##########################################
st.title("Comment Reply for You") # Application title
st.write("Generate automatic replies for user comments") # Application description
text = st.text_area("Enter your comment", "") # Text input for user to enter comments
##########################################
# Step 1: Sentiment Analysis Function
##########################################
def analyze_dominant_emotion(user_review):
"""
Analyze the dominant emotion in the user's review using a text classification model.
"""
emotion_classifier = pipeline(
"text-classification",
model="Thea231/jhartmann_emotion_finetuning",
return_all_scores=True
) # Load pre-trained emotion classification model
emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the review
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the emotion with the highest confidence
return dominant_emotion
##########################################
# Step 2: Response Generation Function
##########################################
def response_gen(user_review):
"""
Generate a response based on the sentiment of the user's review.
"""
# Use Llama-based model to create a response based on a generated prompt
dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion
emotion_label = dominant_emotion['label'].lower() # Extract emotion label
# Define response templates for each emotion
emotion_prompts = {
"anger": (
"Customer complaint: '{review}'\n\n"
"As a customer service representative, write a response that:\n"
"- Sincerely apologizes for the issue\n"
"- Explains how the issue will be resolved\n"
"- Offers compensation where appropriate\n\n"
"Response:"
),
"joy": (
"Customer review: '{review}'\n\n"
"As a customer service representative, write a positive response that:\n"
"- Thanks the customer for their feedback\n"
"- Acknowledges both positive and constructive comments\n"
"- Invites them to explore loyalty programs\n\n"
"Response:"
),
# Add other emotions as needed...
}
# Format the prompt with the user's review
prompt = emotion_prompts.get(emotion_label, "Neutral").format(review=user_review)
# Load a pre-trained text generation model (replace 'meta-llama/Llama-3.2-1B' with an available model)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the prompt
outputs = model.generate(**inputs, max_new_tokens=100) # Generate a response
input_length = inputs.input_ids.shape[1] # Length of the input text
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) # Decode the generated text
return response
##########################################
# Step 3: Text-to-Speech Conversion Function
##########################################
def sound_gen(response):
"""
Convert the generated response to speech and save as a .wav file.
"""
# Load the pre-trained TTS models
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Load speaker embeddings (e.g., neutral female voice)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
# Process the input text and generate a spectrogram
inputs = processor(text=response, return_tensors="pt")
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
# Use the vocoder to generate a waveform
with torch.no_grad():
speech = vocoder(spectrogram)
# Save the generated speech as a .wav file
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
st.audio("customer_service_response.wav") # Play the audio in Streamlit
##########################################
# Main Function
##########################################
def main():
"""
Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech.
"""
if text: # Check if the user entered a comment
response = response_gen(text) # Generate a response
st.write(f"Generated response: {response}") # Display the generated response
sound_gen(response) # Convert the response to speech and play it
# Run the main function
if __name__ == "__main__":
main()