Spaces:
Running
Running
########################################## | |
# Step 0: Import required libraries | |
########################################## | |
import streamlit as st # For building the web application | |
from transformers import ( | |
pipeline, | |
SpeechT5Processor, | |
SpeechT5ForTextToSpeech, | |
SpeechT5HifiGan, | |
AutoModelForCausalLM, | |
AutoTokenizer | |
) # For emotion analysis, text-to-speech, and text generation | |
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings) | |
import torch # For tensor operations | |
import soundfile as sf # For saving audio as .wav files | |
########################################## | |
# Streamlit application title and input | |
########################################## | |
st.title("Comment Reply for You") # Application title | |
st.write("Generate automatic replies for user comments") # Application description | |
text = st.text_area("Enter your comment", "") # Text input for user to enter comments | |
########################################## | |
# Step 1: Sentiment Analysis Function | |
########################################## | |
def analyze_dominant_emotion(user_review): | |
""" | |
Analyze the dominant emotion in the user's review using a text classification model. | |
""" | |
emotion_classifier = pipeline( | |
"text-classification", | |
model="Thea231/jhartmann_emotion_finetuning", | |
return_all_scores=True | |
) # Load pre-trained emotion classification model | |
emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the review | |
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the emotion with the highest confidence | |
return dominant_emotion | |
########################################## | |
# Step 2: Response Generation Function | |
########################################## | |
def response_gen(user_review): | |
""" | |
Generate a response based on the sentiment of the user's review. | |
""" | |
# Use Llama-based model to create a response based on a generated prompt | |
dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion | |
emotion_label = dominant_emotion['label'].lower() # Extract emotion label | |
# Define response templates for each emotion | |
emotion_prompts = { | |
"anger": ( | |
"Customer complaint: '{review}'\n\n" | |
"As a customer service representative, write a response that:\n" | |
"- Sincerely apologizes for the issue\n" | |
"- Explains how the issue will be resolved\n" | |
"- Offers compensation where appropriate\n\n" | |
"Response:" | |
), | |
"joy": ( | |
"Customer review: '{review}'\n\n" | |
"As a customer service representative, write a positive response that:\n" | |
"- Thanks the customer for their feedback\n" | |
"- Acknowledges both positive and constructive comments\n" | |
"- Invites them to explore loyalty programs\n\n" | |
"Response:" | |
), | |
# Add other emotions as needed... | |
} | |
# Format the prompt with the user's review | |
prompt = emotion_prompts.get(emotion_label, "Neutral").format(review=user_review) | |
# Load a pre-trained text generation model (replace 'meta-llama/Llama-3.2-1B' with an available model) | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") | |
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B") | |
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the prompt | |
outputs = model.generate(**inputs, max_new_tokens=100) # Generate a response | |
input_length = inputs.input_ids.shape[1] # Length of the input text | |
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) # Decode the generated text | |
return response | |
########################################## | |
# Step 3: Text-to-Speech Conversion Function | |
########################################## | |
def sound_gen(response): | |
""" | |
Convert the generated response to speech and save as a .wav file. | |
""" | |
# Load the pre-trained TTS models | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Load speaker embeddings (e.g., neutral female voice) | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
# Process the input text and generate a spectrogram | |
inputs = processor(text=response, return_tensors="pt") | |
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) | |
# Use the vocoder to generate a waveform | |
with torch.no_grad(): | |
speech = vocoder(spectrogram) | |
# Save the generated speech as a .wav file | |
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) | |
st.audio("customer_service_response.wav") # Play the audio in Streamlit | |
########################################## | |
# Main Function | |
########################################## | |
def main(): | |
""" | |
Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech. | |
""" | |
if text: # Check if the user entered a comment | |
response = response_gen(text) # Generate a response | |
st.write(f"Generated response: {response}") # Display the generated response | |
sound_gen(response) # Convert the response to speech and play it | |
# Run the main function | |
if __name__ == "__main__": | |
main() | |