File size: 6,551 Bytes
02afb14
 
 
4f2a492
 
 
02afb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2a492
02afb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2a492
02afb14
 
 
 
 
 
 
 
 
 
 
 
4f2a492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02afb14
 
 
 
 
 
 
 
 
 
 
 
4f2a492
02afb14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torch.nn as nn

from ...modules.attention import default, zero_module, checkpoint
from ...modules.diffusionmodules.openaimodel import UNetModel
from ...modules.diffusionmodules.util import timestep_embedding

class DepthAttention(nn.Module):
    def __init__(self, query_dim, context_dim, heads, dim_head, output_bias=True):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads
        self.dim_head = dim_head

        self.to_q = nn.Conv2d(query_dim, inner_dim, 1, 1, bias=False)
        self.to_k = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False)
        self.to_v = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False)
        if output_bias:
            self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1)
        else:
            self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1, bias=False)

    def forward(self, x, context):
        """

        @param x:        b,f0,h,w
        @param context:  b,f1,d,h,w
        @return:
        """
        hn, hd = self.heads, self.dim_head
        b, _, h, w = x.shape
        b, _, d, h, w = context.shape

        q = self.to_q(x).reshape(b,hn,hd,h,w) # b,t,h,w
        k = self.to_k(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w
        v = self.to_v(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w

        sim = torch.sum(q.unsqueeze(3) * k, 2) * self.scale # b,hn,d,h,w
        attn = sim.softmax(dim=2)

        # b,hn,hd,d,h,w * b,hn,1,d,h,w
        out = torch.sum(v * attn.unsqueeze(2), 3) # b,hn,hd,h,w
        out = out.reshape(b,hn*hd,h,w)
        return self.to_out(out)


class DepthTransformer(nn.Module):
    def __init__(self, dim, n_heads, d_head, context_dim=None, checkpoint=False):
        super().__init__()
        inner_dim = n_heads * d_head
        self.proj_in = nn.Sequential(
            nn.Conv2d(dim, inner_dim, 1, 1),
            nn.GroupNorm(8, inner_dim),
            nn.SiLU(True),
        )
        self.proj_context = nn.Sequential(
            nn.Conv3d(context_dim, context_dim, 1, 1, bias=False), # no bias
            nn.GroupNorm(8, context_dim),
            nn.ReLU(True), # only relu, because we want input is 0, output is 0
        )
        self.depth_attn = DepthAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, context_dim=context_dim, output_bias=False)  # is a self-attention if not self.disable_self_attn
        self.proj_out = nn.Sequential(
            nn.GroupNorm(8, inner_dim),
            nn.ReLU(True),
            nn.Conv2d(inner_dim, inner_dim, 3, 1, 1, bias=False),
            nn.GroupNorm(8, inner_dim),
            nn.ReLU(True),
            zero_module(nn.Conv2d(inner_dim, dim, 3, 1, 1, bias=False)),
        )
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)

    def _forward(self, x, context):
        x_in = x
        x = self.proj_in(x)
        context = self.proj_context(context)
        x = self.depth_attn(x, context)
        x = self.proj_out(x) + x_in
        return x


class DepthWiseAttention(UNetModel):
    def __init__(self, volume_dims=(5,16,32,64), *args, **kwargs):
        super().__init__(*args, **kwargs)
        # num_heads = 4
        model_channels = kwargs['model_channels']
        channel_mult = kwargs['channel_mult']
        d0,d1,d2,d3 = volume_dims

        # 4
        ch = model_channels*channel_mult[2]
        self.middle_conditions = DepthTransformer(ch, 4, d3 // 2, context_dim=d3)

        self.output_conditions=nn.ModuleList()
        self.output_b2c = {3:0,4:1,5:2,6:3,7:4,8:5,9:6,10:7,11:8}
        # 8
        ch = model_channels*channel_mult[2]
        self.output_conditions.append(DepthTransformer(ch, 4, d2 // 2, context_dim=d2)) # 0
        self.output_conditions.append(DepthTransformer(ch, 4, d2 // 2, context_dim=d2)) # 1
        # 16
        self.output_conditions.append(DepthTransformer(ch, 4, d1 // 2, context_dim=d1)) # 2
        ch = model_channels*channel_mult[1]
        self.output_conditions.append(DepthTransformer(ch, 4, d1 // 2, context_dim=d1)) # 3
        self.output_conditions.append(DepthTransformer(ch, 4, d1 // 2, context_dim=d1)) # 4
        # 32
        self.output_conditions.append(DepthTransformer(ch, 4, d0 // 2, context_dim=d0)) # 5
        ch = model_channels*channel_mult[0]
        self.output_conditions.append(DepthTransformer(ch, 4, d0 // 2, context_dim=d0)) # 6
        self.output_conditions.append(DepthTransformer(ch, 4, d0 // 2, context_dim=d0)) # 7
        self.output_conditions.append(DepthTransformer(ch, 4, d0 // 2, context_dim=d0)) # 8

    def forward(self, x, timesteps=None, context=None, down_block_additional_residuals=None, mid_block_additional_residual=None, source_dict=None, **kwargs):
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
        emb = self.time_embed(t_emb)

        h = x.type(self.dtype)
        for index, module in enumerate(self.input_blocks):
            h = module(h, emb, context)
            hs.append(h)

        h = self.middle_block(h, emb, context)
        h = self.middle_conditions(h, context=source_dict[h.shape[-1]])

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        
        if is_controlnet:
            new_hs = []

            for down_block_res_sample, down_block_additional_residual in zip(
                hs, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_hs = new_hs + [down_block_res_sample]

            hs = new_hs
            
        if is_controlnet:
            h = h + mid_block_additional_residual
            
        for index, module in enumerate(self.output_blocks):
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb, context)
            if index in self.output_b2c:
                layer = self.output_conditions[self.output_b2c[index]]
                h = layer(h, context=source_dict[h.shape[-1]])

        h = h.type(x.dtype)
        return self.out(h)

    def get_trainable_parameters(self):
        paras = [para for para in self.middle_conditions.parameters()] + [para for para in self.output_conditions.parameters()]
        # paras = [para for para in self.output_conditions.parameters()]
        return paras