import torch import torch.nn as nn class TinyBlock(nn.Module): def __init__(self, in_channels, out_channels, dilation=2): super(TinyBlock, self).__init__() # f1: 3x3 depthwise convolution + BatchNorm self.f1 = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, groups=in_channels, bias=False), nn.BatchNorm2d(in_channels) ) # f2: 1x1 grouped pointwise convolutions with 8 groups + ReLU self.f2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, groups=8, bias=False), nn.ReLU(inplace=True) ) def forward(self, x): f1_out = self.f1(x) f2_out = self.f2(x + f1_out) out = x + f1_out + f2_out return out if __name__ == "__main__": model = TinyBlock(16, 16) print(model) dummy_input = torch.randn(256, 16, 8, 8) output = model(dummy_input) print(output.shape)