import torch from transformers import MambaConfig, MambaModel, Mamba2Config, Mamba2Model print(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"CUDA device: {torch.cuda.get_device_name()}") print(f"CUDA version: {torch.version.cuda}") batch, channel, height, width = 256, 16, 8, 8 x = torch.randn(batch, channel, height, width).to("cuda") print(f'x: {x.shape}') B, C, H, W = x.shape x = x.permute(0, 2, 3, 1) # [B, H, W, C] print(f'Permuted x: {x.shape}') x = x.reshape(B, H * W, C) # [B, L, C], L = H * W print(f'Reshaped x: {x.shape}') # Initializing a Mamba configuration configuration = MambaConfig(vocab_size=0, hidden_size=channel, num_hidden_layers=2) # configuration = Mamba2Config(hidden_size=channel) # Initializing a model (with random weights) from the configuration model = MambaModel(configuration).to("cuda") # model = Mamba2Model(configuration).to("cuda") print(f'Model: {model}') # Accessing the model configuration configuration = model.config print(f'Configuration: {configuration}') # y = model(inputs_embeds=x).last_hidden_state y = model(inputs_embeds=x, return_dict=True)[0] print(f'y: {y.shape}') y = y.reshape(B, H, W, -1) print(f'Reshaped y: {y.shape}') y = y.permute(0, 3, 1, 2) # [B, C, H, W] print(f'Permuted y: {y.shape}')