Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torchaudio
|
7 |
+
import torchaudio.transforms as T
|
8 |
+
import time
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from matplotlib.font_manager import FontProperties
|
11 |
+
|
12 |
+
from model.tinyvad import TinyVAD
|
13 |
+
|
14 |
+
# Configuration
|
15 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
+
|
18 |
+
# Font configuration
|
19 |
+
font_path = '/share/nas169/jethrowang/fonts/Times_New_Roman.ttf'
|
20 |
+
font_prop = FontProperties(fname=font_path, size=18)
|
21 |
+
|
22 |
+
# Model and Processing Parameters
|
23 |
+
WINDOW_SIZE = 0.63
|
24 |
+
SINC_CONV = False
|
25 |
+
SSM = False
|
26 |
+
TARGET_SAMPLE_RATE = 16000
|
27 |
+
|
28 |
+
# Model Initialization
|
29 |
+
model = TinyVAD(1, 32, 64, patch_size=8, num_blocks=2,
|
30 |
+
sinc_conv=SINC_CONV, ssm=SSM).to(device)
|
31 |
+
checkpoint_path = '/share/nas169/jethrowang/SincVAD/exp/exp_0.63_tinyvad_psq_0.05/model_epoch_37_val_auroc=0.8894.ckpt'
|
32 |
+
model.load_state_dict(torch.load(checkpoint_path, weights_only=True))
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
# Audio Processing Transforms
|
36 |
+
mel_spectrogram = T.MelSpectrogram(sample_rate=TARGET_SAMPLE_RATE, n_mels=64, win_length=400, hop_length=160)
|
37 |
+
log_mel_spectrogram = T.AmplitudeToDB()
|
38 |
+
|
39 |
+
# Chunking Parameters
|
40 |
+
chunk_duration = WINDOW_SIZE
|
41 |
+
shift_duration = WINDOW_SIZE * 0.875 # Increased overlap compared to first version
|
42 |
+
|
43 |
+
def predict(audio_record, audio_upload, threshold):
|
44 |
+
"""
|
45 |
+
Predict voice activity in an audio file with detailed processing and visualization.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
audio_file (str): Path to the audio file
|
49 |
+
threshold (float): Decision threshold for speech/non-speech classification
|
50 |
+
|
51 |
+
Yields:
|
52 |
+
Intermediate and final prediction results
|
53 |
+
"""
|
54 |
+
start_time = time.time()
|
55 |
+
|
56 |
+
audio_input = audio_record if audio_record else audio_upload
|
57 |
+
if not audio_input:
|
58 |
+
return "No audio provided!", 0.0, "N/A", None
|
59 |
+
|
60 |
+
try:
|
61 |
+
# Load and preprocess audio
|
62 |
+
waveform, orig_sample_rate = torchaudio.load(audio_input)
|
63 |
+
|
64 |
+
# Resample if necessary
|
65 |
+
if orig_sample_rate != TARGET_SAMPLE_RATE:
|
66 |
+
print(f"Resampling from {orig_sample_rate} Hz to {TARGET_SAMPLE_RATE} Hz")
|
67 |
+
resampler = T.Resample(orig_freq=orig_sample_rate, new_freq=TARGET_SAMPLE_RATE)
|
68 |
+
waveform = resampler(waveform)
|
69 |
+
|
70 |
+
# Ensure mono channel
|
71 |
+
if waveform.size(0) > 1:
|
72 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Error loading audio file: {e}")
|
76 |
+
yield "Error loading audio file.", None, None, None
|
77 |
+
return
|
78 |
+
|
79 |
+
# Audio duration checks and padding
|
80 |
+
audio_duration = waveform.size(1) / TARGET_SAMPLE_RATE
|
81 |
+
print(f"Audio duration: {audio_duration:.2f} seconds")
|
82 |
+
print(f"Original sample rate: {orig_sample_rate} Hz")
|
83 |
+
print(f"Current sample rate: {TARGET_SAMPLE_RATE} Hz")
|
84 |
+
|
85 |
+
if audio_duration < chunk_duration:
|
86 |
+
required_length = int(chunk_duration * TARGET_SAMPLE_RATE)
|
87 |
+
padding_length = required_length - waveform.size(1)
|
88 |
+
waveform = torch.nn.functional.pad(waveform, (0, padding_length))
|
89 |
+
|
90 |
+
# Chunk processing parameters
|
91 |
+
chunk_size = int(chunk_duration * TARGET_SAMPLE_RATE)
|
92 |
+
shift_size = int(shift_duration * TARGET_SAMPLE_RATE)
|
93 |
+
num_chunks = (waveform.size(1) - chunk_size) // shift_size + 1
|
94 |
+
|
95 |
+
predictions = []
|
96 |
+
time_stamps = []
|
97 |
+
detailed_predictions = []
|
98 |
+
|
99 |
+
# Initialize plot
|
100 |
+
fig, ax = plt.subplots(figsize=(12, 5))
|
101 |
+
ax.set_xlabel('Time (seconds)', fontproperties=font_prop)
|
102 |
+
ax.set_ylabel('Probability', fontproperties=font_prop)
|
103 |
+
ax.set_title('Voice Activity Detection Probability Over Time', fontproperties=font_prop)
|
104 |
+
ax.axhline(y=threshold, color='tab:red', linestyle='--', label='Threshold')
|
105 |
+
ax.grid(True)
|
106 |
+
ax.set_ylim([-0.05, 1.05])
|
107 |
+
|
108 |
+
# Process audio in chunks
|
109 |
+
for i in range(num_chunks):
|
110 |
+
start_idx = i * shift_size
|
111 |
+
end_idx = start_idx + chunk_size
|
112 |
+
chunk = waveform[:, start_idx:end_idx]
|
113 |
+
|
114 |
+
if chunk.size(1) < chunk_size:
|
115 |
+
break
|
116 |
+
|
117 |
+
# Feature extraction
|
118 |
+
inputs = mel_spectrogram(chunk)
|
119 |
+
inputs = log_mel_spectrogram(inputs).to(device).unsqueeze(0)
|
120 |
+
|
121 |
+
# Model inference
|
122 |
+
with torch.no_grad():
|
123 |
+
outputs = model(inputs)
|
124 |
+
outputs = torch.sigmoid(outputs)
|
125 |
+
|
126 |
+
# Process outputs
|
127 |
+
predictions.append(outputs.item())
|
128 |
+
time_stamps.append(start_idx / TARGET_SAMPLE_RATE)
|
129 |
+
|
130 |
+
detailed_predictions.append({
|
131 |
+
'start_time': start_idx / TARGET_SAMPLE_RATE,
|
132 |
+
'output': outputs.item(),
|
133 |
+
})
|
134 |
+
|
135 |
+
# Update plot dynamically
|
136 |
+
ax.clear()
|
137 |
+
ax.set_xlabel('Time (seconds)', fontproperties=font_prop)
|
138 |
+
ax.set_ylabel('Probability', fontproperties=font_prop)
|
139 |
+
ax.set_title('Speech Probability Over Time', fontproperties=font_prop)
|
140 |
+
ax.axhline(y=threshold, color='tab:red', linestyle='--', label='Threshold')
|
141 |
+
ax.grid(True)
|
142 |
+
ax.set_ylim([-0.05, 1.05])
|
143 |
+
ax.plot(time_stamps, predictions, label='Speech Probability', color='tab:blue')
|
144 |
+
plt.tight_layout()
|
145 |
+
|
146 |
+
# Yield intermediate progress
|
147 |
+
yield "Processing...", None, None, fig
|
148 |
+
|
149 |
+
# Detailed logging
|
150 |
+
print("Detailed Predictions:")
|
151 |
+
for pred in detailed_predictions:
|
152 |
+
print(f"Start Time: {pred['start_time']:.2f}s, Output: {pred['output']:.4f}")
|
153 |
+
|
154 |
+
# Final prediction processing
|
155 |
+
avg_output = max(0, min(1, np.mean(predictions)))
|
156 |
+
prediction_time = time.time() - start_time
|
157 |
+
|
158 |
+
prediction = "Speech" if avg_output > threshold else "Non-speech"
|
159 |
+
probability = f'{(float(avg_output) * 100):.2f}'
|
160 |
+
inference_time = f'{prediction_time:.4f}'
|
161 |
+
|
162 |
+
print(f"Final Prediction: {prediction}")
|
163 |
+
print(f"Average Probability: {probability}%")
|
164 |
+
print(f"Number of chunks processed: {num_chunks}")
|
165 |
+
|
166 |
+
# Final result
|
167 |
+
yield prediction, probability, inference_time, fig
|
168 |
+
|
169 |
+
# Gradio Interface
|
170 |
+
with gr.Blocks() as demo:
|
171 |
+
gr.Image("./img/logo.png", elem_id="logo", height=100)
|
172 |
+
# Title and Description
|
173 |
+
gr.Markdown("<h1 style='text-align: center; color: black;'>Voice Activity Detection using SincVAD</h1>")
|
174 |
+
gr.Markdown("<h3 style='text-align: center; color: black;'>Record or upload audio to predict speech activity and view the probability curve.</h3>")
|
175 |
+
|
176 |
+
# Interface Layout
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column():
|
179 |
+
# Separate recording and file upload
|
180 |
+
record_input = gr.Audio(source="microphone", type="filepath", label="Record Audio")
|
181 |
+
upload_input = gr.Audio(source="upload", type="filepath", label="Upload Audio")
|
182 |
+
threshold_input = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Threshold")
|
183 |
+
with gr.Column():
|
184 |
+
prediction_output = gr.Textbox(label="Prediction")
|
185 |
+
probability_output = gr.Number(label="Average Probability (%)")
|
186 |
+
time_output = gr.Textbox(label="Inference Time (seconds)")
|
187 |
+
|
188 |
+
plot_output = gr.Plot(label="Probability Curve")
|
189 |
+
|
190 |
+
# Prediction Trigger
|
191 |
+
predict_btn = gr.Button("Start Prediction")
|
192 |
+
predict_btn.click(
|
193 |
+
predict,
|
194 |
+
[record_input, upload_input, threshold_input],
|
195 |
+
[prediction_output, probability_output, time_output, plot_output],
|
196 |
+
api_name="predict"
|
197 |
+
)
|
198 |
+
|
199 |
+
|
200 |
+
# Launch Configuration
|
201 |
+
if __name__ == "__main__":
|
202 |
+
demo.queue() # Enable queue to support generators
|
203 |
+
demo.launch(share=True)
|