Spaces:
Sleeping
Sleeping
File size: 19,131 Bytes
1423dc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.fft
import sys
from torch.autograd import Variable
import math
class GlobalLayerNorm(nn.Module):
'''
Calculate Global Layer Normalization
dim: (int or list or torch.Size) –
input shape from an expected input of size
eps: a value added to the denominator for numerical stability.
elementwise_affine: a boolean value that when set to True,
this module has learnable per-element affine parameters
initialized to ones (for weights) and zeros (for biases).
'''
def __init__(self, dim, eps=1e-05, elementwise_affine=True):
super(GlobalLayerNorm, self).__init__()
self.dim = dim
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.ones(self.dim, 1))
self.bias = nn.Parameter(torch.zeros(self.dim, 1))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
def forward(self, x):
# x = N x C x L
# N x 1 x 1
# cln: mean,var N x 1 x L
# gln: mean,var N x 1 x 1
if x.dim() != 3:
raise RuntimeError("{} accept 3D tensor as input".format(
self.__name__))
mean = torch.mean(x, (1, 2), keepdim=True)
var = torch.mean((x-mean)**2, (1, 2), keepdim=True)
# N x C x L
if self.elementwise_affine:
x = self.weight*(x-mean)/torch.sqrt(var+self.eps)+self.bias
else:
x = (x-mean)/torch.sqrt(var+self.eps)
return x
class TimeSincExtractor(nn.Module):
"""Sinc-based convolution
Parameters
----------
in_channels : `int`
Number of input channels. Must be 1.
out_channels : `int`
Number of filters.
kernel_size : `int`
Filter length.
sample_rate : `int`, optional
Sample rate. Defaults to 16000.
triangular : `bool`
Squared sinc -> Triangular filter.
freq_nml : `bool`
Normalized to gain of 1 in frequency.
range_constraint : `bool`
Project the learned band within nyquist freq manually.
Usage
-----
See `torch.nn.Conv1d`
"""
@staticmethod
def to_mel(hz):
return 2595 * np.log10(1 + hz / 700)
@staticmethod
def to_hz(mel):
return 700 * (10 ** (mel / 2595) - 1)
def swap_(self, x, y, sort=False):
mini = torch.minimum(x, y)
maxi = torch.maximum(x, y)
if sort:
mini, idx = torch.sort(mini)
maxi = maxi[idx].view(mini.shape)
return mini, maxi
def __init__(self, out_channels, kernel_size, triangular=False,
freq_nml=False, range_constraint=False, freq_init='uniform', norm_after=True, sample_rate=16000, in_channels=1,
stride=1, padding=0, dilation=1, bias=False, groups=1, min_low_hz=50, min_band_hz=50, bi_factor=False, frame_length=400, hop_length=160):
super(TimeSincExtractor,self).__init__()
if in_channels != 1:
# msg = (f'SincConv only support one input channel '
# f'(here, in_channels = {in_channels:d}).')
msg = "SincConv only support one input channel (here, in_channels = {%i})" % (in_channels)
raise ValueError(msg)
self.out_channels = out_channels
self.kernel_size = kernel_size
self.triangular = False
self.freq_nml = False
# Forcing the filters to be odd (i.e, perfectly symmetrics)
if kernel_size%2 == 0:
self.kernel_size = self.kernel_size+1
self.stride = stride
self.padding = padding
self.dilation = dilation
self.frame_length = frame_length
self.hop_length = hop_length
if bias:
raise ValueError('SincConv does not support bias.')
if groups > 1:
raise ValueError('SincConv does not support groups.')
self.sample_rate = sample_rate
self.nyquist_rate = sample_rate/2
self.min_low_hz = min_low_hz
self.min_band_hz = min_band_hz
self.range_constraint = range_constraint
self.bi_factor = bi_factor
if self.range_constraint:
# msg = "Range constraint in learned frequency is not supported yet."
# raise ValueError(msg)
if freq_init == "uniform":
low_freq, high_freq = torch.rand(out_channels*2).chunk(2)
elif freq_init == "formant":
# raise NotImplementedError('Formant distribution hasn\'t been implemented yet.')
p = np.load('/share/nas165/Jasonho610/SincNet/exp/formant_distribution.npy')
low_freq, high_freq = torch.from_numpy(np.random.choice(8000, out_channels*2, p=p)).chunk(2)
low_freq = low_freq / self.nyquist_rate
high_freq = high_freq / self.nyquist_rate
elif freq_init == "mel":
# raise NotImplementedError('Mel distribution hasn\'t been implemented yet.')
low_hz = 30
high_hz = self.nyquist_rate - (self.min_low_hz + self.min_band_hz)
mel = np.linspace(self.to_mel(low_hz),
self.to_mel(high_hz),
self.out_channels + 1)
hz = self.to_hz(mel)
low_freq = torch.Tensor(hz[:-1]) / self.nyquist_rate
high_freq = torch.Tensor(hz[1:]) / self.nyquist_rate
else:
raise ValueError('SincConv must specify the freq initialization methods.')
low_freq, high_freq = self.swap_(low_freq, high_freq)
if self.bi_factor:
self.band_imp = nn.Parameter(torch.ones(out_channels))
self.low_f_ = nn.Parameter(low_freq.view(-1, 1))
self.high_f_ = nn.Parameter(high_freq.view(-1, 1))
else:
# initialize filterbanks such that they are equally spaced in Mel scale
low_hz = 30
high_hz = self.nyquist_rate - (self.min_low_hz + self.min_band_hz)
mel = np.linspace(self.to_mel(low_hz),
self.to_mel(high_hz),
self.out_channels + 1)
hz = self.to_hz(mel)
# filter lower frequency (out_channels, 1)
self.low_hz_ = nn.Parameter(torch.Tensor(hz[:-1]).view(-1, 1))
# filter frequency band (out_channels, 1)
self.band_hz_ = nn.Parameter(torch.Tensor(np.diff(hz)).view(-1, 1))
# Hamming window
# self.window_ = torch.hamming_window(self.kernel_size)
n_lin = torch.linspace(0, (self.kernel_size/2)-1, steps=int((self.kernel_size/2))) # computing only half of the window
self.window_ = 0.54-0.46*torch.cos(2*math.pi*n_lin/self.kernel_size);
# (1, kernel_size/2)
n = (self.kernel_size - 1) / 2.0
self.n_ = 2*math.pi*torch.arange(-n, 0).view(1, -1) / self.sample_rate # Due to symmetry, I only need half of the time axes
self.norm_after = norm_after
if self.norm_after:
self.ln = GlobalLayerNorm(out_channels)
def forward(self, waveforms, embedding):
"""
Parameters
----------
waveforms : `torch.Tensor` (batch_size, 1, n_samples)
Batch of waveforms.
Returns
-------
features : `torch.Tensor` (batch_size, out_channels, n_samples_out)
Batch of sinc filters activations.
"""
self.n_ = self.n_.to(waveforms.device)
self.window_ = self.window_.to(waveforms.device)
# waveforms = waveforms.unsqueeze(1)
# print("Waveforms:", waveforms.shape)
framing_padding = self.frame_length - (waveforms.shape[-1] % self.hop_length)
waveforms = F.pad(waveforms, (0, framing_padding))
frames = waveforms.unfold(-1, self.frame_length, self.hop_length)
batch_size = frames.shape[0]
n_frames = frames.shape[2]
if self.range_constraint:
low_f_, high_f_ = self.swap_(torch.abs(self.low_f_), torch.abs(self.high_f_))
low = self.min_low_hz + low_f_*self.nyquist_rate
high = torch.clamp(self.min_band_hz + high_f_*self.nyquist_rate, self.min_low_hz, self.nyquist_rate)
band = (high-low)[:,0]
else:
low = self.min_low_hz + torch.abs(self.low_hz_)
high = torch.clamp(low + self.min_band_hz + torch.abs(self.band_hz_), self.min_low_hz, self.nyquist_rate)
band = (high-low)[:,0]
self.low = low
self.high = high
self.band = band
f_times_t_low = torch.matmul(low, self.n_)
f_times_t_high = torch.matmul(high, self.n_)
band_pass_left = ((torch.sin(f_times_t_high)-torch.sin(f_times_t_low))/(self.n_/2))*self.window_ # Equivalent of Eq.4 of the reference paper (SPEAKER RECOGNITION FROM RAW WAVEFORM WITH SINCNET). I just have expanded the sinc and simplified the terms. This way I avoid several useless computations.
band_pass_center = 2*band.view(-1,1)
band_pass_right = torch.flip(band_pass_left,dims=[1])
band_pass = torch.cat([band_pass_left,band_pass_center,band_pass_right],dim=1)
band_pass = band_pass / (2*band[:,None])
if self.triangular:
band_pass = band_pass**2
if self.freq_nml:
mag_resp = torch.fft.rfft(band_pass).abs()
mag_max = torch.max(mag_resp, dim=-1)[0]
band_pass = band_pass / mag_max.unsqueeze(-1)
if self.bi_factor:
band_imp = F.relu(self.band_imp)
band_pass = band_pass * band_imp.unsqueeze(-1)
self.filters = (band_pass).view(
self.out_channels, 1, self.kernel_size)
# print("Filters:", self.filters.shape)
# print("Frames:", frames.shape)
rs_frames = frames.reshape(batch_size*n_frames, 1, self.frame_length)
# print("Reshaped frames:", rs_frames.shape)
filtered = F.conv1d(rs_frames, self.filters, stride=self.stride,
padding=self.padding, dilation=self.dilation,
bias=None, groups=1)
# print('Pass conv1d')
# print("Filtered:", filtered.shape)
if self.norm_after:
filtered = self.ln(filtered)
# print("Normed filtered:", filtered.shape)
filtered = filtered.reshape(batch_size, n_frames, self.out_channels , -1)
# print("Final filtered:", filtered.shape)
energy = torch.mean(filtered**2, dim=-1)
log_filtered_energy = torch.log10(energy + 1e-6)
# print("Log filtered energy:", log_filtered_energy.shape) # (batch_size, n_samples_out(time), out_channels(frequency))
log_filtered_energy = log_filtered_energy.unsqueeze(1)
# print("Unsqueezed log filtered energy:", log_filtered_energy.shape) # (batch_size, channels, n_samples_out(time), out_channels(frequency))
log_filtered_energy = log_filtered_energy.permute(0, 1, 3, 2)
# print("Permuted log filtered energy:", log_filtered_energy.shape) # (batch_size, channels, out_channels(frequency), n_samples_out(time))
return log_filtered_energy, self.filters, self.stride, self.padding
class FreqSincExtractor(nn.Module):
@staticmethod
def to_mel(hz):
return 2595 * np.log10(1 + hz / 700)
@staticmethod
def to_hz(mel):
return 700 * (10 ** (mel / 2595) - 1)
def swap_(self, x, y, sort=False):
mini = torch.minimum(x, y)
maxi = torch.maximum(x, y)
if sort:
mini, idx = torch.sort(mini)
maxi = maxi[idx].view(mini.shape)
return mini, maxi
def __init__(self, out_channels, kernel_size, triangular=False,
freq_nml=False, range_constraint=False, freq_init='uniform',
norm_after=True, sample_rate=16000, in_channels=1,
stride=1, padding=0, dilation=1, bias=False, groups=1,
min_low_hz=50, min_band_hz=50, bi_factor=False,
frame_length=400, hop_length=160, n_fft=400):
super(FreqSincExtractor, self).__init__()
if in_channels != 1:
msg = "FreqSincExtractor only supports one input channel (here, in_channels = {%i})" % (in_channels)
raise ValueError(msg)
self.out_channels = out_channels
self.kernel_size = kernel_size
self.triangular = triangular
self.freq_nml = freq_nml
self.sample_rate = sample_rate
self.nyquist_rate = sample_rate/2
self.min_low_hz = min_low_hz
self.min_band_hz = min_band_hz
self.range_constraint = range_constraint
self.bi_factor = bi_factor
self.frame_length = frame_length
self.hop_length = hop_length
self.n_fft = n_fft
self.stride = stride
self.padding = padding
self.output_size = 64
# Initialize frequency bands
if self.range_constraint:
if freq_init == "uniform":
low_freq, high_freq = torch.rand(out_channels*2).chunk(2)
elif freq_init == "mel":
low_hz = 30
high_hz = self.nyquist_rate - (self.min_low_hz + self.min_band_hz)
mel = np.linspace(self.to_mel(low_hz),
self.to_mel(high_hz),
self.out_channels + 1)
hz = self.to_hz(mel)
low_freq = torch.Tensor(hz[:-1]) / self.nyquist_rate
high_freq = torch.Tensor(hz[1:]) / self.nyquist_rate
else:
raise ValueError('FreqSincExtractor must specify the freq initialization methods.')
low_freq, high_freq = self.swap_(low_freq, high_freq)
if self.bi_factor:
self.band_imp = nn.Parameter(torch.ones(out_channels))
self.low_f_ = nn.Parameter(low_freq.view(-1, 1))
self.high_f_ = nn.Parameter(high_freq.view(-1, 1))
else:
low_hz = 30
high_hz = self.nyquist_rate - (self.min_low_hz + self.min_band_hz)
mel = np.linspace(self.to_mel(low_hz),
self.to_mel(high_hz),
self.out_channels + 1)
hz = self.to_hz(mel)
self.low_hz_ = nn.Parameter(torch.Tensor(hz[:-1]).view(-1, 1))
self.band_hz_ = nn.Parameter(torch.Tensor(np.diff(hz)).view(-1, 1))
# Frequency axis for STFT
self.freq_axis = torch.linspace(0, self.nyquist_rate, self.n_fft//2 + 1)
self.norm_after = norm_after
if self.norm_after:
self.ln = GlobalLayerNorm(out_channels)
def get_filters(self):
if self.range_constraint:
low_f_, high_f_ = self.swap_(torch.abs(self.low_f_), torch.abs(self.high_f_))
low = self.min_low_hz + low_f_ * self.nyquist_rate
high = torch.clamp(self.min_low_hz + high_f_ * self.nyquist_rate,
self.min_low_hz, self.nyquist_rate)
else:
low = self.min_low_hz + torch.abs(self.low_hz_)
high = torch.clamp(low + self.min_band_hz + torch.abs(self.band_hz_),
self.min_low_hz, self.nyquist_rate)
# Create frequency domain filters
freq_axis = self.freq_axis.to(low.device)
filters = torch.zeros((self.out_channels, len(freq_axis))).to(low.device)
for i in range(self.out_channels):
mask = (freq_axis >= low[i]) & (freq_axis <= high[i])
filters[i, mask] = 1.0
if self.triangular:
center_freq = (low[i] + high[i]) / 2
bandwidth = high[i] - low[i]
mask = (freq_axis >= low[i]) & (freq_axis <= high[i])
freq_response = 1.0 - torch.abs(freq_axis[mask] - center_freq) / (bandwidth/2)
filters[i, mask] = freq_response
if self.freq_nml:
filters = F.normalize(filters, p=2, dim=1)
if self.bi_factor:
band_imp = F.relu(self.band_imp)
filters = filters * band_imp.unsqueeze(-1)
return filters
def forward(self, waveforms, embedding=None):
batch_size = waveforms.shape[0]
# Calculate necessary padding to achieve the correct output size
target_length = self.hop_length * (self.output_size - 1) + self.frame_length
current_length = waveforms.shape[-1]
padding_needed = target_length - current_length
# Pad the input if necessary
if padding_needed > 0:
waveforms = F.pad(waveforms, (0, padding_needed))
# Compute STFT
stft = torch.stft(waveforms.squeeze(1),
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.frame_length,
window=torch.hann_window(self.frame_length).to(waveforms.device),
return_complex=True)
# Get magnitude spectrogram
mag_spec = torch.abs(stft) # (batch_size, freq_bins, time_frames)
# Get and apply filters
filters = self.get_filters() # (out_channels, freq_bins)
filtered = torch.matmul(filters, mag_spec) # (batch_size, out_channels, time_frames)
if self.norm_after:
filtered = self.ln(filtered)
# Compute log energy
energy = filtered ** 2
log_energy = torch.log10(energy + 1e-6)
# Ensure correct time dimension
if log_energy.shape[-1] != self.output_size:
log_energy = F.interpolate(
log_energy,
size=self.output_size,
mode='linear',
align_corners=False
)
# Reshape to the desired output format
log_energy = log_energy.unsqueeze(1) # Add channel dimension
log_energy = log_energy.permute(0, 1, 3, 2) # Rearrange to (batch, channel, freq, time)
return log_energy, filters, self.stride, self.padding
if __name__ == "__main__":
batch_size = 256
n_samples = 10080
waveforms = torch.rand(batch_size, 1, n_samples)
# model = TimeSincExtractor(out_channels=64, kernel_size=101, range_constraint=True, stride=2)
model = FreqSincExtractor(out_channels=64, kernel_size=101, range_constraint=True, stride=2)
print(model)
outputs, _, _, _ = model(waveforms, embedding=None)
print("Outputs:", outputs.shape)
|