Spaces:
Sleeping
Sleeping
File size: 18,774 Bytes
1423dc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
'''
Copied and modified from
https://github.com/hustvl/Vim/blob/main/mamba-1p1p1/mamba_ssm/modules/mamba_simple.py
'''
# Copyright (c) 2023, Tri Dao, Albert Gu.
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from einops import rearrange, repeat
try:
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
causal_conv1d_fn, causal_conv1d_update = None
try:
from .selective_scan_interface import selective_scan_fn, mamba_inner_fn, bimamba_inner_fn, mamba_inner_fn_no_out_proj
except ImportError:
selective_scan_fn, mamba_inner_fn, bimamba_inner_fn, mamba_inner_fn_no_out_proj = None, None, None, None, None
try:
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
except ImportError:
selective_state_update = None
try:
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
except ImportError:
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
class Mamba(nn.Module):
def __init__(
self,
d_model,
d_state=16,
d_conv=4,
expand=2,
dt_rank="auto",
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
conv_bias=True,
bias=False,
use_fast_path=True, # Fused kernel options
layer_idx=None,
device=None,
dtype=None,
bimamba_type="none",
if_devide_out=True, # False
init_layer_scale=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.expand = expand
self.d_inner = int(self.expand * self.d_model)
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
self.use_fast_path = use_fast_path
self.layer_idx = layer_idx
self.bimamba_type = bimamba_type
self.if_devide_out = if_devide_out
assert bimamba_type == 'v2'
self.init_layer_scale = init_layer_scale
if init_layer_scale is not None:
self.gamma = nn.Parameter(init_layer_scale * torch.ones((d_model)), requires_grad=True)
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
self.conv1d = nn.Conv1d(
in_channels=self.d_inner,
out_channels=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
groups=self.d_inner,
padding=d_conv - 1,
**factory_kwargs,
)
self.activation = "silu"
self.act = nn.SiLU()
self.x_proj = nn.Linear(
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
)
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
# Initialize special dt projection to preserve variance at initialization
dt_init_std = self.dt_rank**-0.5 * dt_scale
if dt_init == "constant":
nn.init.constant_(self.dt_proj.weight, dt_init_std)
elif dt_init == "random":
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
dt = torch.exp(
torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
).clamp(min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
self.dt_proj.bias.copy_(inv_dt)
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
self.dt_proj.bias._no_reinit = True
# S4D real initialization
A = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_log = torch.log(A) # Keep A_log in fp32
self.A_log = nn.Parameter(A_log)
self.A_log._no_weight_decay = True
# D "skip" parameter
self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
self.D._no_weight_decay = True
# bidirectional
if bimamba_type == "v1":
A_b = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_b_log = torch.log(A_b) # Keep A_b_log in fp32
self.A_b_log = nn.Parameter(A_b_log)
self.A_b_log._no_weight_decay = True
elif bimamba_type == "v2":
A_b = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_b_log = torch.log(A_b) # Keep A_b_log in fp32
self.A_b_log = nn.Parameter(A_b_log)
self.A_b_log._no_weight_decay = True
self.conv1d_b = nn.Conv1d(
in_channels=self.d_inner,
out_channels=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
groups=self.d_inner,
padding=d_conv - 1,
**factory_kwargs,
)
self.x_proj_b = nn.Linear(
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
)
self.dt_proj_b = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
self.D_b = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
self.D_b._no_weight_decay = True
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
def forward(self, hidden_states, inference_params=None):
"""
hidden_states: (B, L, D)
Returns: same shape as hidden_states
"""
batch, seqlen, dim = hidden_states.shape
conv_state, ssm_state = None, None
if inference_params is not None:
conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
if inference_params.seqlen_offset > 0:
# The states are updated inplace
out, _, _ = self.step(hidden_states, conv_state, ssm_state)
return out
# We do matmul and transpose BLH -> HBL at the same time
xz = rearrange(
self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj.bias is not None:
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
# In the backward pass we write dx and dz next to each other to avoid torch.cat
if self.use_fast_path and inference_params is None: # Doesn't support outputting the states
if self.bimamba_type == "v1":
A_b = -torch.exp(self.A_b_log.float())
out = bimamba_inner_fn(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias,
A,
A_b,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
elif self.bimamba_type == "v2":
A_b = -torch.exp(self.A_b_log.float())
out = mamba_inner_fn_no_out_proj(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
out_b = mamba_inner_fn_no_out_proj(
xz.flip([-1]),
self.conv1d_b.weight,
self.conv1d_b.bias,
self.x_proj_b.weight,
self.dt_proj_b.weight,
A_b,
None,
None,
self.D_b.float(),
delta_bias=self.dt_proj_b.bias.float(),
delta_softplus=True,
)
if not self.if_devide_out:
out = F.linear(rearrange(out + out_b.flip([-1]), "b d l -> b l d"), self.out_proj.weight, self.out_proj.bias)
else:
out = F.linear(rearrange(0.5*out + 0.5*out_b.flip([-1]), "b d l -> b l d"), self.out_proj.weight, self.out_proj.bias)
else:
out = mamba_inner_fn(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
else:
x, z = xz.chunk(2, dim=1)
# Compute short convolution
if conv_state is not None:
# If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W)
if causal_conv1d_fn is None:
x = self.act(self.conv1d(x)[..., :seqlen])
else:
assert self.activation in ["silu", "swish"]
x = causal_conv1d_fn(
x=x,
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
bias=self.conv1d.bias,
activation=self.activation,
)
# We're careful here about the layout, to avoid extra transposes.
# We want dt to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
dt = self.dt_proj.weight @ dt.t()
dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
assert self.activation in ["silu", "swish"]
y = selective_scan_fn(
x,
dt,
A,
B,
C,
self.D.float(),
z=z,
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
return_last_state=ssm_state is not None,
)
if ssm_state is not None:
y, last_state = y
ssm_state.copy_(last_state)
y = rearrange(y, "b d l -> b l d")
out = self.out_proj(y)
if self.init_layer_scale is not None:
out = out * self.gamma
return out
def step(self, hidden_states, conv_state, ssm_state):
dtype = hidden_states.dtype
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
x, z = xz.chunk(2, dim=-1) # (B D)
# Conv step
if causal_conv1d_update is None:
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
conv_state[:, :, -1] = x
x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
if self.conv1d.bias is not None:
x = x + self.conv1d.bias
x = self.act(x).to(dtype=dtype)
else:
x = causal_conv1d_update(
x,
conv_state,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.activation,
)
x_db = self.x_proj(x) # (B dt_rank+2*d_state)
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
# Don't add dt_bias here
dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
# SSM step
if selective_state_update is None:
# Discretize A and B
dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))
dB = torch.einsum("bd,bn->bdn", dt, B)
ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB)
y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C)
y = y + self.D.to(dtype) * x
y = y * self.act(z) # (B D)
else:
y = selective_state_update(
ssm_state, x, dt, A, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True
)
out = self.out_proj(y)
return out.unsqueeze(1), conv_state, ssm_state
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
device = self.out_proj.weight.device
conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
conv_state = torch.zeros(
batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype
)
ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype
# ssm_dtype = torch.float32
ssm_state = torch.zeros(
batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype
)
return conv_state, ssm_state
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
assert self.layer_idx is not None
if self.layer_idx not in inference_params.key_value_memory_dict:
batch_shape = (batch_size,)
conv_state = torch.zeros(
batch_size,
self.d_model * self.expand,
self.d_conv,
device=self.conv1d.weight.device,
dtype=self.conv1d.weight.dtype,
)
ssm_state = torch.zeros(
batch_size,
self.d_model * self.expand,
self.d_state,
device=self.dt_proj.weight.device,
dtype=self.dt_proj.weight.dtype,
# dtype=torch.float32,
)
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
else:
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
# TODO: What if batch size changes between generation, and we reuse the same states?
if initialize_states:
conv_state.zero_()
ssm_state.zero_()
return conv_state, ssm_state
class Block(nn.Module):
def __init__(
self, dim, mixer_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False
):
"""
Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"
This Block has a slightly different structure compared to a regular
prenorm Transformer block.
The standard block is: LN -> MHA/MLP -> Add.
[Ref: https://arxiv.org/abs/2002.04745]
Here we have: Add -> LN -> Mixer, returning both
the hidden_states (output of the mixer) and the residual.
This is purely for performance reasons, as we can fuse add and LayerNorm.
The residual needs to be provided (except for the very first block).
"""
super().__init__()
self.residual_in_fp32 = residual_in_fp32
self.fused_add_norm = fused_add_norm
self.mixer = mixer_cls(dim)
self.norm = norm_cls(dim)
if self.fused_add_norm:
assert RMSNorm is not None, "RMSNorm import fails"
assert isinstance(
self.norm, (nn.LayerNorm, RMSNorm)
), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
def forward(
self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
):
r"""Pass the input through the encoder layer.
Args:
hidden_states: the sequence to the encoder layer (required).
residual: hidden_states = Mixer(LN(residual))
"""
if not self.fused_add_norm:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
else:
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
hidden_states, residual = fused_add_norm_fn(
hidden_states,
self.norm.weight,
self.norm.bias,
residual=residual,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
eps=self.norm.eps,
)
hidden_states = self.mixer(hidden_states, inference_params=inference_params)
return hidden_states, residual
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|