Spaces:
Sleeping
Sleeping
File size: 36,300 Bytes
1423dc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 |
"""Conformer implementation.
Authors
-------
* Jianyuan Zhong 2020
* Samuele Cornell 2021
* Sylvain de Langen 2023
"""
import warnings
from dataclasses import dataclass
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import speechbrain as sb
from speechbrain.nnet.activations import Swish
from speechbrain.nnet.attention import (
MultiheadAttention,
PositionalwiseFeedForward,
RelPosMHAXL,
)
from speechbrain.nnet.hypermixing import HyperMixing
from speechbrain.nnet.normalization import LayerNorm
from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
@dataclass
class ConformerEncoderLayerStreamingContext:
"""Streaming metadata and state for a `ConformerEncoderLayer`.
The multi-head attention and Dynamic Chunk Convolution require to save some
left context that gets inserted as left padding.
See :class:`.ConvolutionModule` documentation for further details.
"""
mha_left_context_size: int
"""For this layer, specifies how many frames of inputs should be saved.
Usually, the same value is used across all layers, but this can be modified.
"""
mha_left_context: Optional[torch.Tensor] = None
"""Left context to insert at the left of the current chunk as inputs to the
multi-head attention. It can be `None` (if we're dealing with the first
chunk) or `<= mha_left_context_size` because for the first few chunks, not
enough left context may be available to pad.
"""
dcconv_left_context: Optional[torch.Tensor] = None
"""Left context to insert at the left of the convolution according to the
Dynamic Chunk Convolution method.
Unlike `mha_left_context`, here the amount of frames to keep is fixed and
inferred from the kernel size of the convolution module.
"""
@dataclass
class ConformerEncoderStreamingContext:
"""Streaming metadata and state for a `ConformerEncoder`."""
dynchunktrain_config: DynChunkTrainConfig
"""Dynamic Chunk Training configuration holding chunk size and context size
information."""
layers: List[ConformerEncoderLayerStreamingContext]
"""Streaming metadata and state for each layer of the encoder."""
class ConvolutionModule(nn.Module):
"""This is an implementation of convolution module in Conformer.
Arguments
---------
input_size : int
The expected size of the input embedding dimension.
kernel_size: int, optional
Kernel size of non-bottleneck convolutional layer.
bias: bool, optional
Whether to use bias in the non-bottleneck conv layer.
activation: torch.nn.Module
Activation function used after non-bottleneck conv layer.
dropout: float, optional
Dropout rate.
causal: bool, optional
Whether the convolution should be causal or not.
dilation: int, optional
Dilation factor for the non bottleneck conv layer.
Example
-------
>>> import torch
>>> x = torch.rand((8, 60, 512))
>>> net = ConvolutionModule(512, 3)
>>> output = net(x)
>>> output.shape
torch.Size([8, 60, 512])
"""
def __init__(
self,
input_size,
kernel_size=31,
bias=True,
activation=Swish,
dropout=0.0,
causal=False,
dilation=1,
):
super().__init__()
self.kernel_size = kernel_size
self.causal = causal
self.dilation = dilation
if self.causal:
self.padding = (kernel_size - 1) * 2 ** (dilation - 1)
else:
self.padding = (kernel_size - 1) * 2 ** (dilation - 1) // 2
self.layer_norm = nn.LayerNorm(input_size)
self.bottleneck = nn.Sequential(
# pointwise
nn.Conv1d(
input_size, 2 * input_size, kernel_size=1, stride=1, bias=bias
),
nn.GLU(dim=1),
)
# depthwise
self.conv = nn.Conv1d(
input_size,
input_size,
kernel_size=kernel_size,
stride=1,
padding=self.padding,
dilation=dilation,
groups=input_size,
bias=bias,
)
# BatchNorm in the original Conformer replaced with a LayerNorm due to
# https://github.com/speechbrain/speechbrain/pull/1329
# see discussion
# https://github.com/speechbrain/speechbrain/pull/933#issuecomment-1033367884
self.after_conv = nn.Sequential(
nn.LayerNorm(input_size),
activation(),
# pointwise
nn.Linear(input_size, input_size, bias=bias),
nn.Dropout(dropout),
)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
):
"""Applies the convolution to an input tensor `x`.
Arguments
---------
x: torch.Tensor
Input tensor to the convolution module.
mask: torch.Tensor, optional
Mask to be applied over the output of the convolution using
`masked_fill_`, if specified.
dynchunktrain_config: DynChunkTrainConfig, optional
If specified, makes the module support Dynamic Chunk Convolution
(DCConv) as implemented by
`Dynamic Chunk Convolution for Unified Streaming and Non-Streaming Conformer ASR <https://www.amazon.science/publications/dynamic-chunk-convolution-for-unified-streaming-and-non-streaming-conformer-asr>`_.
This allows masking future frames while preserving better accuracy
than a fully causal convolution, at a small speed cost.
This should only be used for training (or, if you know what you're
doing, for masked evaluation at inference time), as the forward
streaming function should be used at inference time.
Returns
-------
out: torch.Tensor
The output tensor.
"""
if dynchunktrain_config is not None:
# chances are chunking+causal is unintended; i don't know where it
# may make sense, but if it does to you, feel free to implement it.
assert (
not self.causal
), "Chunked convolution not supported with causal padding"
assert (
self.dilation == 1
), "Current DynChunkTrain logic does not support dilation != 1"
# in a causal convolution, which is not the case here, an output
# frame would never be able to depend on a input frame from any
# point in the future.
# but with the dynamic chunk convolution, we instead use a "normal"
# convolution but where, for any output frame, the future beyond the
# "current" chunk gets masked.
# see the paper linked in the documentation for details.
chunk_size = dynchunktrain_config.chunk_size
batch_size = x.shape[0]
# determine the amount of padding we need to insert at the right of
# the last chunk so that all chunks end up with the same size.
if x.shape[1] % chunk_size != 0:
final_right_padding = chunk_size - (x.shape[1] % chunk_size)
else:
final_right_padding = 0
# -> [batch_size, t, in_channels]
out = self.layer_norm(x)
# -> [batch_size, in_channels, t] for the CNN
out = out.transpose(1, 2)
# -> [batch_size, in_channels, t] (pointwise)
out = self.bottleneck(out)
# -> [batch_size, in_channels, lc+t+final_right_padding]
out = F.pad(out, (self.padding, final_right_padding), value=0)
# now, make chunks with left context.
# as a recap to what the above padding and this unfold do, consider
# each a/b/c letter represents a frame as part of chunks a, b, c.
# consider a chunk size of 4 and a kernel size of 5 (padding=2):
#
# input seq: 00aaaabbbbcc00
# chunk #1: 00aaaa
# chunk #2: aabbbb
# chunk #3: bbcc00
#
# a few remarks here:
# - the left padding gets inserted early so that the unfold logic
# works trivially
# - the right 0-padding got inserted as the number of time steps
# could not be evenly split in `chunk_size` chunks
# -> [batch_size, in_channels, num_chunks, lc+chunk_size]
out = out.unfold(2, size=chunk_size + self.padding, step=chunk_size)
# as we manually disable padding in the convolution below, we insert
# right 0-padding to the chunks, e.g. reusing the above example:
#
# chunk #1: 00aaaa00
# chunk #2: aabbbb00
# chunk #3: bbcc0000
# -> [batch_size, in_channels, num_chunks, lc+chunk_size+rpad]
out = F.pad(out, (0, self.padding), value=0)
# the transpose+flatten effectively flattens chunks into the batch
# dimension to be processed into the time-wise convolution. the
# chunks will later on be unflattened.
# -> [batch_size, num_chunks, in_channels, lc+chunk_size+rpad]
out = out.transpose(1, 2)
# -> [batch_size * num_chunks, in_channels, lc+chunk_size+rpad]
out = out.flatten(start_dim=0, end_dim=1)
# TODO: experiment around reflect padding, which is difficult
# because small chunks have too little time steps to reflect from
# let's keep backwards compat by pointing at the weights from the
# already declared Conv1d.
#
# still reusing the above example, the convolution will be applied,
# with the padding truncated on both ends. the following example
# shows the letter corresponding to the input frame on which the
# convolution was centered.
#
# as you can see, the sum of lengths of all chunks is equal to our
# input sequence length + `final_right_padding`.
#
# chunk #1: aaaa
# chunk #2: bbbb
# chunk #3: cc00
# -> [batch_size * num_chunks, out_channels, chunk_size]
out = F.conv1d(
out,
weight=self.conv.weight,
bias=self.conv.bias,
stride=self.conv.stride,
padding=0,
dilation=self.conv.dilation,
groups=self.conv.groups,
)
# -> [batch_size * num_chunks, chunk_size, out_channels]
out = out.transpose(1, 2)
out = self.after_conv(out)
# -> [batch_size, num_chunks, chunk_size, out_channels]
out = torch.unflatten(out, dim=0, sizes=(batch_size, -1))
# -> [batch_size, t + final_right_padding, out_channels]
out = torch.flatten(out, start_dim=1, end_dim=2)
# -> [batch_size, t, out_channels]
if final_right_padding > 0:
out = out[:, :-final_right_padding, :]
else:
out = self.layer_norm(x)
out = out.transpose(1, 2)
out = self.bottleneck(out)
out = self.conv(out)
if self.causal:
# chomp
out = out[..., : -self.padding]
out = out.transpose(1, 2)
out = self.after_conv(out)
if mask is not None:
out.masked_fill_(mask, 0.0)
return out
class ConformerEncoderLayer(nn.Module):
"""This is an implementation of Conformer encoder layer.
Arguments
---------
d_model : int
The expected size of the input embedding.
d_ffn : int
Hidden size of self-attention Feed Forward layer.
nhead : int
Number of attention heads.
kernel_size : int, optional
Kernel size of convolution model.
kdim : int, optional
Dimension of the key.
vdim : int, optional
Dimension of the value.
activation: torch.nn.Module
Activation function used in each Conformer layer.
bias : bool, optional
Whether convolution module.
dropout : int, optional
Dropout for the encoder.
causal : bool, optional
Whether the convolutions should be causal or not.
attention_type : str, optional
type of attention layer, e.g. regularMHA for regular MultiHeadAttention.
Example
-------
>>> import torch
>>> x = torch.rand((8, 60, 512))
>>> pos_embs = torch.rand((1, 2*60-1, 512))
>>> net = ConformerEncoderLayer(d_ffn=512, nhead=8, d_model=512, kernel_size=3)
>>> output = net(x, pos_embs=pos_embs)
>>> output[0].shape
torch.Size([8, 60, 512])
"""
def __init__(
self,
d_model,
d_ffn,
nhead,
kernel_size=31,
kdim=None,
vdim=None,
activation=Swish,
bias=True,
dropout=0.0,
causal=False,
attention_type="RelPosMHAXL",
):
super().__init__()
if attention_type == "regularMHA":
self.mha_layer = MultiheadAttention(
nhead=nhead,
d_model=d_model,
dropout=dropout,
kdim=kdim,
vdim=vdim,
)
elif attention_type == "RelPosMHAXL":
# transformerXL style positional encoding
self.mha_layer = RelPosMHAXL(
num_heads=nhead,
embed_dim=d_model,
dropout=dropout,
mask_pos_future=causal,
)
elif attention_type == "hypermixing":
self.mha_layer = HyperMixing(
input_output_dim=d_model,
hypernet_size=d_ffn,
tied=False,
num_heads=nhead,
fix_tm_hidden_size=False,
)
self.convolution_module = ConvolutionModule(
d_model, kernel_size, bias, activation, dropout, causal=causal
)
self.ffn_module1 = nn.Sequential(
nn.LayerNorm(d_model),
PositionalwiseFeedForward(
d_ffn=d_ffn,
input_size=d_model,
dropout=dropout,
activation=activation,
),
nn.Dropout(dropout),
)
self.ffn_module2 = nn.Sequential(
nn.LayerNorm(d_model),
PositionalwiseFeedForward(
d_ffn=d_ffn,
input_size=d_model,
dropout=dropout,
activation=activation,
),
nn.Dropout(dropout),
)
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.drop = nn.Dropout(dropout)
def forward(
self,
x,
src_mask: Optional[torch.Tensor] = None,
src_key_padding_mask: Optional[torch.Tensor] = None,
pos_embs: torch.Tensor = None,
dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
):
"""
Arguments
----------
src : torch.Tensor
The sequence to the encoder layer.
src_mask : torch.Tensor, optional
The mask for the src sequence.
src_key_padding_mask : torch.Tensor, optional
The mask for the src keys per batch.
pos_embs: torch.Tensor, torch.nn.Module, optional
Module or tensor containing the input sequence positional embeddings
dynchunktrain_config: Optional[DynChunkTrainConfig]
Dynamic Chunk Training configuration object for streaming,
specifically involved here to apply Dynamic Chunk Convolution to
the convolution module.
"""
conv_mask: Optional[torch.Tensor] = None
if src_key_padding_mask is not None:
conv_mask = src_key_padding_mask.unsqueeze(-1)
# ffn module
x = x + 0.5 * self.ffn_module1(x)
# multi-head attention module
skip = x
x = self.norm1(x)
x, self_attn = self.mha_layer(
x,
x,
x,
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask,
pos_embs=pos_embs,
)
x = x + skip
# convolution module
x = x + self.convolution_module(
x, conv_mask, dynchunktrain_config=dynchunktrain_config
)
# ffn module
x = self.norm2(x + 0.5 * self.ffn_module2(x))
return x, self_attn
def forward_streaming(
self,
x,
context: ConformerEncoderLayerStreamingContext,
pos_embs: torch.Tensor = None,
):
"""Conformer layer streaming forward (typically for
DynamicChunkTraining-trained models), which is to be used at inference
time. Relies on a mutable context object as initialized by
`make_streaming_context` that should be used across chunks.
Invoked by `ConformerEncoder.forward_streaming`.
Arguments
---------
x : torch.Tensor
Input tensor for this layer. Batching is supported as long as you
keep the context consistent.
context : ConformerEncoderStreamingContext
Mutable streaming context; the same object should be passed across
calls.
pos_embs : torch.Tensor, optional
Positional embeddings, if used.
Returns
-------
x : torch.Tensor
Output tensor.
self_attn : list
List of self attention values.
"""
orig_len = x.shape[-2]
# ffn module
x = x + 0.5 * self.ffn_module1(x)
# TODO: make the approach for MHA left context more efficient.
# currently, this saves the inputs to the MHA.
# the naive approach is suboptimal in a few ways, namely that the
# outputs for this left padding is being re-computed even though we
# discard them immediately after.
# left pad `x` with our MHA left context
if context.mha_left_context is not None:
x = torch.cat((context.mha_left_context, x), dim=1)
# compute new MHA left context for the next call to our function
if context.mha_left_context_size > 0:
context.mha_left_context = x[
..., -context.mha_left_context_size :, :
]
# multi-head attention module
skip = x
x = self.norm1(x)
x, self_attn = self.mha_layer(
x,
x,
x,
attn_mask=None,
key_padding_mask=None,
pos_embs=pos_embs,
)
x = x + skip
# truncate outputs corresponding to the MHA left context (we only care
# about our chunk's outputs); see above to-do
x = x[..., -orig_len:, :]
if context.dcconv_left_context is not None:
x = torch.cat((context.dcconv_left_context, x), dim=1)
# compute new DCConv left context for the next call to our function
context.dcconv_left_context = x[
..., -self.convolution_module.padding :, :
]
# convolution module
x = x + self.convolution_module(x)
# truncate outputs corresponding to the DCConv left context
x = x[..., -orig_len:, :]
# ffn module
x = self.norm2(x + 0.5 * self.ffn_module2(x))
return x, self_attn
def make_streaming_context(self, mha_left_context_size: int):
"""Creates a blank streaming context for this encoding layer.
Arguments
---------
mha_left_context_size : int
How many left frames should be saved and used as left context to the
current chunk when streaming
Returns
-------
ConformerEncoderLayerStreamingContext
"""
return ConformerEncoderLayerStreamingContext(
mha_left_context_size=mha_left_context_size
)
class ConformerEncoder(nn.Module):
"""This class implements the Conformer encoder.
Arguments
---------
num_layers : int
Number of layers.
d_model : int
Embedding dimension size.
d_ffn : int
Hidden size of self-attention Feed Forward layer.
nhead : int
Number of attention heads.
kernel_size : int, optional
Kernel size of convolution model.
kdim : int, optional
Dimension of the key.
vdim : int, optional
Dimension of the value.
activation: torch.nn.Module
Activation function used in each Confomer layer.
bias : bool, optional
Whether convolution module.
dropout : int, optional
Dropout for the encoder.
causal: bool, optional
Whether the convolutions should be causal or not.
attention_type: str, optional
type of attention layer, e.g. regularMHA for regular MultiHeadAttention.
Example
-------
>>> import torch
>>> x = torch.rand((8, 60, 512))
>>> pos_emb = torch.rand((1, 2*60-1, 512))
>>> net = ConformerEncoder(1, 512, 512, 8)
>>> output, _ = net(x, pos_embs=pos_emb)
>>> output.shape
torch.Size([8, 60, 512])
"""
def __init__(
self,
num_layers,
d_model,
d_ffn,
nhead,
kernel_size=31,
kdim=None,
vdim=None,
activation=Swish,
bias=True,
dropout=0.0,
causal=False,
attention_type="RelPosMHAXL",
):
super().__init__()
self.layers = torch.nn.ModuleList(
[
ConformerEncoderLayer(
d_ffn=d_ffn,
nhead=nhead,
d_model=d_model,
kdim=kdim,
vdim=vdim,
dropout=dropout,
activation=activation,
kernel_size=kernel_size,
bias=bias,
causal=causal,
attention_type=attention_type,
)
for i in range(num_layers)
]
)
self.norm = LayerNorm(d_model, eps=1e-6)
self.attention_type = attention_type
def forward(
self,
src,
src_mask: Optional[torch.Tensor] = None,
src_key_padding_mask: Optional[torch.Tensor] = None,
pos_embs: Optional[torch.Tensor] = None,
dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
):
"""
Arguments
----------
src : torch.Tensor
The sequence to the encoder layer.
src_mask : torch.Tensor, optional
The mask for the src sequence.
src_key_padding_mask : torch.Tensor, optional
The mask for the src keys per batch.
pos_embs: torch.Tensor, torch.nn.Module,
Module or tensor containing the input sequence positional embeddings
If custom pos_embs are given it needs to have the shape (1, 2*S-1, E)
where S is the sequence length, and E is the embedding dimension.
dynchunktrain_config: Optional[DynChunkTrainConfig]
Dynamic Chunk Training configuration object for streaming,
specifically involved here to apply Dynamic Chunk Convolution to the
convolution module.
"""
if self.attention_type == "RelPosMHAXL":
if pos_embs is None:
raise ValueError(
"The chosen attention type for the Conformer is RelPosMHAXL. For this attention type, the positional embeddings are mandatory"
)
output = src
attention_lst = []
for enc_layer in self.layers:
output, attention = enc_layer(
output,
src_mask=src_mask,
src_key_padding_mask=src_key_padding_mask,
pos_embs=pos_embs,
dynchunktrain_config=dynchunktrain_config,
)
attention_lst.append(attention)
output = self.norm(output)
return output, attention_lst
def forward_streaming(
self,
src: torch.Tensor,
context: ConformerEncoderStreamingContext,
pos_embs: Optional[torch.Tensor] = None,
):
"""Conformer streaming forward (typically for
DynamicChunkTraining-trained models), which is to be used at inference
time. Relies on a mutable context object as initialized by
`make_streaming_context` that should be used across chunks.
Arguments
---------
src : torch.Tensor
Input tensor. Batching is supported as long as you keep the context
consistent.
context : ConformerEncoderStreamingContext
Mutable streaming context; the same object should be passed across
calls.
pos_embs : torch.Tensor, optional
Positional embeddings, if used.
Returns
-------
output : torch.Tensor
The output of the streaming conformer.
attention_lst : list
The attention values.
"""
if self.attention_type == "RelPosMHAXL":
if pos_embs is None:
raise ValueError(
"The chosen attention type for the Conformer is RelPosMHAXL. For this attention type, the positional embeddings are mandatory"
)
output = src
attention_lst = []
for i, enc_layer in enumerate(self.layers):
output, attention = enc_layer.forward_streaming(
output, pos_embs=pos_embs, context=context.layers[i]
)
attention_lst.append(attention)
output = self.norm(output)
return output, attention_lst
def make_streaming_context(self, dynchunktrain_config: DynChunkTrainConfig):
"""Creates a blank streaming context for the encoder.
Arguments
---------
dynchunktrain_config: Optional[DynChunkTrainConfig]
Dynamic Chunk Training configuration object for streaming
Returns
-------
ConformerEncoderStreamingContext
"""
return ConformerEncoderStreamingContext(
dynchunktrain_config=dynchunktrain_config,
layers=[
layer.make_streaming_context(
mha_left_context_size=dynchunktrain_config.left_context_size_frames()
)
for layer in self.layers
],
)
class ConformerDecoderLayer(nn.Module):
"""This is an implementation of Conformer encoder layer.
Arguments
---------
d_model : int
The expected size of the input embedding.
d_ffn : int
Hidden size of self-attention Feed Forward layer.
nhead : int
Number of attention heads.
kernel_size : int, optional
Kernel size of convolution model.
kdim : int, optional
Dimension of the key.
vdim : int, optional
Dimension of the value.
activation : torch.nn.Module, optional
Activation function used in each Conformer layer.
bias : bool, optional
Whether convolution module.
dropout : int, optional
Dropout for the encoder.
causal : bool, optional
Whether the convolutions should be causal or not.
attention_type : str, optional
type of attention layer, e.g. regularMHA for regular MultiHeadAttention.
Example
-------
>>> import torch
>>> x = torch.rand((8, 60, 512))
>>> pos_embs = torch.rand((1, 2*60-1, 512))
>>> net = ConformerEncoderLayer(d_ffn=512, nhead=8, d_model=512, kernel_size=3)
>>> output = net(x, pos_embs=pos_embs)
>>> output[0].shape
torch.Size([8, 60, 512])
"""
def __init__(
self,
d_model,
d_ffn,
nhead,
kernel_size,
kdim=None,
vdim=None,
activation=Swish,
bias=True,
dropout=0.0,
causal=True,
attention_type="RelPosMHAXL",
):
super().__init__()
if not causal:
warnings.warn(
"Decoder is not causal, in most applications it should be causal, you have been warned !"
)
if attention_type == "regularMHA":
self.mha_layer = MultiheadAttention(
nhead=nhead,
d_model=d_model,
dropout=dropout,
kdim=kdim,
vdim=vdim,
)
elif attention_type == "RelPosMHAXL":
# transformerXL style positional encoding
self.mha_layer = RelPosMHAXL(
num_heads=nhead,
embed_dim=d_model,
dropout=dropout,
mask_pos_future=causal,
)
self.convolution_module = ConvolutionModule(
d_model, kernel_size, bias, activation, dropout, causal=causal
)
self.ffn_module1 = nn.Sequential(
nn.LayerNorm(d_model),
PositionalwiseFeedForward(
d_ffn=d_ffn,
input_size=d_model,
dropout=dropout,
activation=activation,
),
nn.Dropout(dropout),
)
self.ffn_module2 = nn.Sequential(
nn.LayerNorm(d_model),
PositionalwiseFeedForward(
d_ffn=d_ffn,
input_size=d_model,
dropout=dropout,
activation=activation,
),
nn.Dropout(dropout),
)
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.drop = nn.Dropout(dropout)
def forward(
self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None,
pos_embs_tgt=None,
pos_embs_src=None,
):
"""
Arguments
---------
tgt: torch.Tensor
The sequence to the decoder layer.
memory: torch.Tensor
The sequence from the last layer of the encoder.
tgt_mask: torch.Tensor, optional, optional
The mask for the tgt sequence.
memory_mask: torch.Tensor, optional
The mask for the memory sequence.
tgt_key_padding_mask: torch.Tensor, optional
The mask for the tgt keys per batch.
memory_key_padding_mask: torch.Tensor, optional
The mask for the memory keys per batch.
pos_embs_tgt: torch.Tensor, torch.nn.Module, optional
Module or tensor containing the target sequence positional embeddings for each attention layer.
pos_embs_src: torch.Tensor, torch.nn.Module, optional
Module or tensor containing the source sequence positional embeddings for each attention layer.
Returns
-------
x: torch.Tensor
The output tensor
self_attn : torch.Tensor
self_attn : torch.Tensor
The self attention tensor
"""
# ffn module
tgt = tgt + 0.5 * self.ffn_module1(tgt)
# multi-head attention module
skip = tgt
x = self.norm1(tgt)
x, self_attn = self.mha_layer(
x,
memory,
memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
pos_embs=pos_embs_src,
)
x = x + skip
# convolution module
x = x + self.convolution_module(x)
# ffn module
x = self.norm2(x + 0.5 * self.ffn_module2(x))
return x, self_attn, self_attn
class ConformerDecoder(nn.Module):
"""This class implements the Transformer decoder.
Arguments
---------
num_layers: int
Number of layers.
nhead: int
Number of attention heads.
d_ffn: int
Hidden size of self-attention Feed Forward layer.
d_model: int
Embedding dimension size.
kdim: int, optional
Dimension for key.
vdim: int, optional
Dimension for value.
dropout: float, optional
Dropout rate.
activation: torch.nn.Module, optional
Activation function used after non-bottleneck conv layer.
kernel_size : int, optional
Kernel size of convolutional layer.
bias : bool, optional
Whether convolution module.
causal: bool, optional
Whether the convolutions should be causal or not.
attention_type: str, optional
type of attention layer, e.g. regularMHA for regular MultiHeadAttention.
Example
-------
>>> src = torch.rand((8, 60, 512))
>>> tgt = torch.rand((8, 60, 512))
>>> net = ConformerDecoder(1, 8, 1024, 512, attention_type="regularMHA")
>>> output, _, _ = net(tgt, src)
>>> output.shape
torch.Size([8, 60, 512])
"""
def __init__(
self,
num_layers,
nhead,
d_ffn,
d_model,
kdim=None,
vdim=None,
dropout=0.0,
activation=Swish,
kernel_size=3,
bias=True,
causal=True,
attention_type="RelPosMHAXL",
):
super().__init__()
self.layers = torch.nn.ModuleList(
[
ConformerDecoderLayer(
d_ffn=d_ffn,
nhead=nhead,
d_model=d_model,
kdim=kdim,
vdim=vdim,
dropout=dropout,
activation=activation,
kernel_size=kernel_size,
bias=bias,
causal=causal,
attention_type=attention_type,
)
for _ in range(num_layers)
]
)
self.norm = sb.nnet.normalization.LayerNorm(d_model, eps=1e-6)
def forward(
self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None,
pos_embs_tgt=None,
pos_embs_src=None,
):
"""
Arguments
---------
tgt: torch.Tensor
The sequence to the decoder layer.
memory: torch.Tensor
The sequence from the last layer of the encoder.
tgt_mask: torch.Tensor, optional, optional
The mask for the tgt sequence.
memory_mask: torch.Tensor, optional
The mask for the memory sequence.
tgt_key_padding_mask : torch.Tensor, optional
The mask for the tgt keys per batch.
memory_key_padding_mask : torch.Tensor, optional
The mask for the memory keys per batch.
pos_embs_tgt: torch.Tensor, torch.nn.Module, optional
Module or tensor containing the target sequence positional embeddings for each attention layer.
pos_embs_src: torch.Tensor, torch.nn.Module, optional
Module or tensor containing the source sequence positional embeddings for each attention layer.
Returns
-------
output: torch.Tensor
Conformer decoder output.
self_attns : list
Location of self attentions.
multihead_attns : list
Location of multihead attentions.
"""
output = tgt
self_attns, multihead_attns = [], []
for dec_layer in self.layers:
output, self_attn, multihead_attn = dec_layer(
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos_embs_tgt=pos_embs_tgt,
pos_embs_src=pos_embs_src,
)
self_attns.append(self_attn)
multihead_attns.append(multihead_attn)
output = self.norm(output)
return output, self_attns, multihead_attns
|