Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import { z } from "zod"; | |
import type { Endpoint } from "../endpoints"; | |
import { env } from "$env/dynamic/private"; | |
import type { TextGenerationStreamOutput } from "@huggingface/inference"; | |
import { createImageProcessorOptionsValidator } from "../images"; | |
import { endpointMessagesToAnthropicMessages, addToolResults } from "./utils"; | |
import { createDocumentProcessorOptionsValidator } from "../document"; | |
import type { | |
Tool, | |
ToolCall, | |
ToolInput, | |
ToolInputFile, | |
ToolInputFixed, | |
ToolInputOptional, | |
} from "$lib/types/Tool"; | |
import type Anthropic from "@anthropic-ai/sdk"; | |
import type { MessageParam } from "@anthropic-ai/sdk/resources/messages.mjs"; | |
import directlyAnswer from "$lib/server/tools/directlyAnswer"; | |
export const endpointAnthropicParametersSchema = z.object({ | |
weight: z.number().int().positive().default(1), | |
model: z.any(), | |
type: z.literal("anthropic"), | |
baseURL: z.string().url().default("https://api.anthropic.com"), | |
apiKey: z.string().default(env.ANTHROPIC_API_KEY ?? "sk-"), | |
defaultHeaders: z.record(z.string()).optional(), | |
defaultQuery: z.record(z.string()).optional(), | |
multimodal: z | |
.object({ | |
image: createImageProcessorOptionsValidator({ | |
supportedMimeTypes: ["image/png", "image/jpeg", "image/webp"], | |
preferredMimeType: "image/webp", | |
// The 4 / 3 compensates for the 33% increase in size when converting to base64 | |
maxSizeInMB: (5 / 4) * 3, | |
maxWidth: 4096, | |
maxHeight: 4096, | |
}), | |
document: createDocumentProcessorOptionsValidator({ | |
supportedMimeTypes: ["application/pdf"], | |
maxSizeInMB: 32, | |
}), | |
}) | |
.default({}), | |
}); | |
export async function endpointAnthropic( | |
input: z.input<typeof endpointAnthropicParametersSchema> | |
): Promise<Endpoint> { | |
const { baseURL, apiKey, model, defaultHeaders, defaultQuery, multimodal } = | |
endpointAnthropicParametersSchema.parse(input); | |
let Anthropic; | |
try { | |
Anthropic = (await import("@anthropic-ai/sdk")).default; | |
} catch (e) { | |
throw new Error("Failed to import @anthropic-ai/sdk", { cause: e }); | |
} | |
const anthropic = new Anthropic({ | |
apiKey, | |
baseURL, | |
defaultHeaders, | |
defaultQuery, | |
}); | |
return async ({ | |
messages, | |
preprompt, | |
generateSettings, | |
conversationId, | |
tools = [], | |
toolResults = [], | |
}) => { | |
let system = preprompt; | |
if (messages?.[0]?.from === "system") { | |
system = messages[0].content; | |
} | |
let tokenId = 0; | |
if (tools.length === 0 && toolResults.length > 0) { | |
const toolNames = new Set(toolResults.map((tool) => tool.call.name)); | |
tools = Array.from(toolNames).map((name) => ({ | |
name, | |
description: "", | |
inputs: [], | |
})) as unknown as Tool[]; | |
} | |
const parameters = { ...model.parameters, ...generateSettings }; | |
return (async function* () { | |
const stream = anthropic.messages.stream({ | |
model: model.id ?? model.name, | |
tools: createAnthropicTools(tools), | |
tool_choice: | |
tools.length > 0 ? { type: "auto", disable_parallel_tool_use: false } : undefined, | |
messages: addToolResults( | |
await endpointMessagesToAnthropicMessages(messages, multimodal, conversationId), | |
toolResults | |
) as MessageParam[], | |
max_tokens: parameters?.max_new_tokens, | |
temperature: parameters?.temperature, | |
top_p: parameters?.top_p, | |
top_k: parameters?.top_k, | |
stop_sequences: parameters?.stop, | |
system, | |
}); | |
while (true) { | |
const result = await Promise.race([stream.emitted("text"), stream.emitted("end")]); | |
if (result === undefined) { | |
if ("tool_use" === stream.receivedMessages[0].stop_reason) { | |
// this should really create a new "Assistant" message with the tool id in it. | |
const toolCalls: ToolCall[] = stream.receivedMessages[0].content | |
.filter( | |
(block): block is Anthropic.Messages.ContentBlock & { type: "tool_use" } => | |
block.type === "tool_use" | |
) | |
.map((block) => ({ | |
name: block.name, | |
parameters: block.input as Record<string, string | number | boolean>, | |
id: block.id, | |
})); | |
yield { | |
token: { id: tokenId, text: "", logprob: 0, special: false, toolCalls }, | |
generated_text: null, | |
details: null, | |
}; | |
} else { | |
yield { | |
token: { | |
id: tokenId++, | |
text: "", | |
logprob: 0, | |
special: true, | |
}, | |
generated_text: await stream.finalText(), | |
details: null, | |
} satisfies TextGenerationStreamOutput; | |
} | |
return; | |
} | |
// Text delta | |
yield { | |
token: { | |
id: tokenId++, | |
text: result as unknown as string, | |
special: false, | |
logprob: 0, | |
}, | |
generated_text: null, | |
details: null, | |
} satisfies TextGenerationStreamOutput; | |
} | |
})(); | |
}; | |
} | |
function createAnthropicTools(tools: Tool[]): Anthropic.Messages.Tool[] { | |
return tools | |
.filter((tool) => tool.name !== directlyAnswer.name) | |
.map((tool) => { | |
const properties = tool.inputs.reduce( | |
(acc, input) => { | |
acc[input.name] = convertToolInputToJSONSchema(input); | |
return acc; | |
}, | |
{} as Record<string, unknown> | |
); | |
const required = tool.inputs | |
.filter((input) => input.paramType === "required") | |
.map((input) => input.name); | |
return { | |
name: tool.name, | |
description: tool.description, | |
input_schema: { | |
type: "object", | |
properties, | |
required: required.length > 0 ? required : undefined, | |
}, | |
}; | |
}); | |
} | |
function convertToolInputToJSONSchema(input: ToolInput): Record<string, unknown> { | |
const baseSchema: Record<string, unknown> = {}; | |
if ("description" in input) { | |
baseSchema["description"] = input.description || ""; | |
} | |
switch (input.paramType) { | |
case "optional": | |
baseSchema["default"] = (input as ToolInputOptional).default; | |
break; | |
case "fixed": | |
baseSchema["const"] = (input as ToolInputFixed).value; | |
break; | |
} | |
if (input.type === "file") { | |
baseSchema["type"] = "string"; | |
baseSchema["format"] = "binary"; | |
baseSchema["mimeTypes"] = (input as ToolInputFile).mimeTypes; | |
} else { | |
switch (input.type) { | |
case "str": | |
baseSchema["type"] = "string"; | |
break; | |
case "int": | |
baseSchema["type"] = "integer"; | |
break; | |
case "float": | |
baseSchema["type"] = "number"; | |
break; | |
case "bool": | |
baseSchema["type"] = "boolean"; | |
break; | |
} | |
} | |
return baseSchema; | |
} | |