Spaces:
Sleeping
Sleeping
Updated UI
Browse files- Gradio_UI.py +73 -248
Gradio_UI.py
CHANGED
@@ -18,180 +18,21 @@ import os
|
|
18 |
import re
|
19 |
import shutil
|
20 |
from typing import Optional
|
21 |
-
|
22 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
23 |
from smolagents.agents import ActionStep, MultiStepAgent
|
24 |
from smolagents.memory import MemoryStep
|
25 |
from smolagents.utils import _is_package_available
|
|
|
|
|
|
|
26 |
|
|
|
|
|
27 |
|
28 |
-
def
|
29 |
-
step_log: MemoryStep,
|
30 |
-
):
|
31 |
-
"""Extract ChatMessage objects from agent steps with proper nesting"""
|
32 |
-
import gradio as gr
|
33 |
-
|
34 |
-
if isinstance(step_log, ActionStep):
|
35 |
-
# Output the step number
|
36 |
-
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
|
37 |
-
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
|
38 |
-
|
39 |
-
# First yield the thought/reasoning from the LLM
|
40 |
-
if hasattr(step_log, "model_output") and step_log.model_output is not None:
|
41 |
-
# Clean up the LLM output
|
42 |
-
model_output = step_log.model_output.strip()
|
43 |
-
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
|
44 |
-
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
|
45 |
-
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
|
46 |
-
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
|
47 |
-
model_output = model_output.strip()
|
48 |
-
yield gr.ChatMessage(role="assistant", content=model_output)
|
49 |
-
|
50 |
-
# For tool calls, create a parent message
|
51 |
-
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
|
52 |
-
first_tool_call = step_log.tool_calls[0]
|
53 |
-
used_code = first_tool_call.name == "python_interpreter"
|
54 |
-
parent_id = f"call_{len(step_log.tool_calls)}"
|
55 |
-
|
56 |
-
# Tool call becomes the parent message with timing info
|
57 |
-
# First we will handle arguments based on type
|
58 |
-
args = first_tool_call.arguments
|
59 |
-
if isinstance(args, dict):
|
60 |
-
content = str(args.get("answer", str(args)))
|
61 |
-
else:
|
62 |
-
content = str(args).strip()
|
63 |
-
|
64 |
-
if used_code:
|
65 |
-
# Clean up the content by removing any end code tags
|
66 |
-
content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks
|
67 |
-
content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
|
68 |
-
content = content.strip()
|
69 |
-
if not content.startswith("```python"):
|
70 |
-
content = f"```python\n{content}\n```"
|
71 |
-
|
72 |
-
parent_message_tool = gr.ChatMessage(
|
73 |
-
role="assistant",
|
74 |
-
content=content,
|
75 |
-
metadata={
|
76 |
-
"title": f"🛠️ Used tool {first_tool_call.name}",
|
77 |
-
"id": parent_id,
|
78 |
-
"status": "pending",
|
79 |
-
},
|
80 |
-
)
|
81 |
-
yield parent_message_tool
|
82 |
-
|
83 |
-
# Nesting execution logs under the tool call if they exist
|
84 |
-
if hasattr(step_log, "observations") and (
|
85 |
-
step_log.observations is not None and step_log.observations.strip()
|
86 |
-
): # Only yield execution logs if there's actual content
|
87 |
-
log_content = step_log.observations.strip()
|
88 |
-
if log_content:
|
89 |
-
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
|
90 |
-
yield gr.ChatMessage(
|
91 |
-
role="assistant",
|
92 |
-
content=f"{log_content}",
|
93 |
-
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
|
94 |
-
)
|
95 |
-
|
96 |
-
# Nesting any errors under the tool call
|
97 |
-
if hasattr(step_log, "error") and step_log.error is not None:
|
98 |
-
yield gr.ChatMessage(
|
99 |
-
role="assistant",
|
100 |
-
content=str(step_log.error),
|
101 |
-
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
|
102 |
-
)
|
103 |
-
|
104 |
-
# Update parent message metadata to done status without yielding a new message
|
105 |
-
parent_message_tool.metadata["status"] = "done"
|
106 |
-
|
107 |
-
# Handle standalone errors but not from tool calls
|
108 |
-
elif hasattr(step_log, "error") and step_log.error is not None:
|
109 |
-
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
|
110 |
-
|
111 |
-
# Calculate duration and token information
|
112 |
-
step_footnote = f"{step_number}"
|
113 |
-
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
|
114 |
-
token_str = (
|
115 |
-
f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
|
116 |
-
)
|
117 |
-
step_footnote += token_str
|
118 |
-
if hasattr(step_log, "duration"):
|
119 |
-
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
|
120 |
-
step_footnote += step_duration
|
121 |
-
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
|
122 |
-
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
|
123 |
-
yield gr.ChatMessage(role="assistant", content="-----")
|
124 |
-
|
125 |
-
|
126 |
-
def stream_to_gradio(
|
127 |
-
agent,
|
128 |
-
task: str,
|
129 |
-
reset_agent_memory: bool = False,
|
130 |
-
additional_args: Optional[dict] = None,
|
131 |
-
):
|
132 |
-
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
133 |
-
if not _is_package_available("gradio"):
|
134 |
-
raise ModuleNotFoundError(
|
135 |
-
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
136 |
-
)
|
137 |
-
import gradio as gr
|
138 |
-
|
139 |
-
total_input_tokens = 0
|
140 |
-
total_output_tokens = 0
|
141 |
-
|
142 |
-
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
143 |
-
# Track tokens if model provides them
|
144 |
-
if hasattr(agent.model, "last_input_token_count"):
|
145 |
-
total_input_tokens += agent.model.last_input_token_count
|
146 |
-
total_output_tokens += agent.model.last_output_token_count
|
147 |
-
if isinstance(step_log, ActionStep):
|
148 |
-
step_log.input_token_count = agent.model.last_input_token_count
|
149 |
-
step_log.output_token_count = agent.model.last_output_token_count
|
150 |
-
|
151 |
-
for message in pull_messages_from_step(
|
152 |
-
step_log,
|
153 |
-
):
|
154 |
-
yield message
|
155 |
-
|
156 |
-
final_answer = step_log # Last log is the run's final_answer
|
157 |
-
final_answer = handle_agent_output_types(final_answer)
|
158 |
-
|
159 |
-
if isinstance(final_answer, AgentText):
|
160 |
-
yield gr.ChatMessage(
|
161 |
-
role="assistant",
|
162 |
-
content=f"**Final answer:**\n{final_answer.to_string()}\n",
|
163 |
-
)
|
164 |
-
elif isinstance(final_answer, AgentImage):
|
165 |
-
yield gr.ChatMessage(
|
166 |
-
role="assistant",
|
167 |
-
content={"path": final_answer.to_string(), "mime_type": "image/png"},
|
168 |
-
)
|
169 |
-
elif isinstance(final_answer, AgentAudio):
|
170 |
-
yield gr.ChatMessage(
|
171 |
-
role="assistant",
|
172 |
-
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
|
173 |
-
)
|
174 |
-
else:
|
175 |
-
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
|
176 |
-
|
177 |
-
|
178 |
-
class GradioUI:
|
179 |
-
"""A one-line interface to launch your agent in Gradio"""
|
180 |
-
|
181 |
-
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
|
182 |
-
if not _is_package_available("gradio"):
|
183 |
-
raise ModuleNotFoundError(
|
184 |
-
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
185 |
-
)
|
186 |
self.agent = agent
|
187 |
-
self.file_upload_folder = file_upload_folder
|
188 |
-
if self.file_upload_folder is not None:
|
189 |
-
if not os.path.exists(file_upload_folder):
|
190 |
-
os.mkdir(file_upload_folder)
|
191 |
|
192 |
def interact_with_agent(self, prompt, messages):
|
193 |
-
import gradio as gr
|
194 |
-
|
195 |
messages.append(gr.ChatMessage(role="user", content=prompt))
|
196 |
yield messages
|
197 |
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
|
@@ -199,73 +40,46 @@ class GradioUI:
|
|
199 |
yield messages
|
200 |
yield messages
|
201 |
|
202 |
-
def upload_file(
|
203 |
-
self,
|
204 |
-
file,
|
205 |
-
file_uploads_log,
|
206 |
-
allowed_file_types=[
|
207 |
-
"application/pdf",
|
208 |
-
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
209 |
-
"text/plain",
|
210 |
-
],
|
211 |
-
):
|
212 |
-
"""
|
213 |
-
Handle file uploads, default allowed types are .pdf, .docx, and .txt
|
214 |
-
"""
|
215 |
-
import gradio as gr
|
216 |
-
|
217 |
-
if file is None:
|
218 |
-
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
|
219 |
-
|
220 |
-
try:
|
221 |
-
mime_type, _ = mimetypes.guess_type(file.name)
|
222 |
-
except Exception as e:
|
223 |
-
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
|
224 |
-
|
225 |
-
if mime_type not in allowed_file_types:
|
226 |
-
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
|
227 |
-
|
228 |
-
# Sanitize file name
|
229 |
-
original_name = os.path.basename(file.name)
|
230 |
-
sanitized_name = re.sub(
|
231 |
-
r"[^\w\-.]", "_", original_name
|
232 |
-
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
|
233 |
-
|
234 |
-
type_to_ext = {}
|
235 |
-
for ext, t in mimetypes.types_map.items():
|
236 |
-
if t not in type_to_ext:
|
237 |
-
type_to_ext[t] = ext
|
238 |
-
|
239 |
-
# Ensure the extension correlates to the mime type
|
240 |
-
sanitized_name = sanitized_name.split(".")[:-1]
|
241 |
-
sanitized_name.append("" + type_to_ext[mime_type])
|
242 |
-
sanitized_name = "".join(sanitized_name)
|
243 |
-
|
244 |
-
# Save the uploaded file to the specified folder
|
245 |
-
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
|
246 |
-
shutil.copy(file.name, file_path)
|
247 |
-
|
248 |
-
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
|
249 |
-
|
250 |
-
def log_user_message(self, text_input, file_uploads_log):
|
251 |
-
return (
|
252 |
-
text_input
|
253 |
-
+ (
|
254 |
-
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
|
255 |
-
if len(file_uploads_log) > 0
|
256 |
-
else ""
|
257 |
-
),
|
258 |
-
"",
|
259 |
-
)
|
260 |
-
|
261 |
def launch(self, **kwargs):
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
type="messages",
|
270 |
avatar_images=(
|
271 |
None,
|
@@ -274,23 +88,34 @@ class GradioUI:
|
|
274 |
resizeable=True,
|
275 |
scale=1,
|
276 |
)
|
277 |
-
# If an upload folder is provided, enable the upload feature
|
278 |
-
if self.file_upload_folder is not None:
|
279 |
-
upload_file = gr.File(label="Upload a file")
|
280 |
-
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
|
281 |
-
upload_file.change(
|
282 |
-
self.upload_file,
|
283 |
-
[upload_file, file_uploads_log],
|
284 |
-
[upload_status, file_uploads_log],
|
285 |
-
)
|
286 |
-
text_input = gr.Textbox(lines=1, label="Chat Message")
|
287 |
-
text_input.submit(
|
288 |
-
self.log_user_message,
|
289 |
-
[text_input, file_uploads_log],
|
290 |
-
[stored_messages, text_input],
|
291 |
-
).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot])
|
292 |
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
-
|
|
|
18 |
import re
|
19 |
import shutil
|
20 |
from typing import Optional
|
|
|
21 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
22 |
from smolagents.agents import ActionStep, MultiStepAgent
|
23 |
from smolagents.memory import MemoryStep
|
24 |
from smolagents.utils import _is_package_available
|
25 |
+
import gradio as gr
|
26 |
+
from gradio.components import Markdown
|
27 |
+
from gradio.components import Chatbot, Textbox, State, Button
|
28 |
|
29 |
+
class EnhancedGradioUI:
|
30 |
+
"""Enhanced Gradio UI with markdown introduction and quick prompt buttons"""
|
31 |
|
32 |
+
def __init__(self, agent):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
self.agent = agent
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def interact_with_agent(self, prompt, messages):
|
|
|
|
|
36 |
messages.append(gr.ChatMessage(role="user", content=prompt))
|
37 |
yield messages
|
38 |
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
|
|
|
40 |
yield messages
|
41 |
yield messages
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def launch(self, **kwargs):
|
44 |
+
with gr.Blocks(theme="base") as demo:
|
45 |
+
# State to store chat messages
|
46 |
+
stored_messages = State([])
|
47 |
+
|
48 |
+
# Markdown Introduction
|
49 |
+
gr.Markdown("""
|
50 |
+
# NBAi - NBA Stats Chatbot 🤖🏀
|
51 |
+
|
52 |
+
Welcome to **NBAi**, your personal NBA statistics assistant! This app fetches and presents NBA box scores from last night's games, giving you insights on player performance, team stats, and more.
|
53 |
+
|
54 |
+
## Features
|
55 |
+
- Get real-time NBA box scores and player statistics.
|
56 |
+
- Ask questions like:
|
57 |
+
- Who had the most points last night?
|
58 |
+
- Who grabbed the most rebounds?
|
59 |
+
- Who had the highest assist-to-turnover ratio?
|
60 |
+
|
61 |
+
## Tools Used 🔧
|
62 |
+
- **smolagents** for building multi-step agents.
|
63 |
+
- **Gradio** for the user interface.
|
64 |
+
- **BeautifulSoup** and **Pandas** for web scraping and data processing.
|
65 |
+
- **DuckDuckGoSearchTool** and **VisitWebpageTool** for enhanced web interactions.
|
66 |
+
|
67 |
+
## How to Use 🚀
|
68 |
+
- Click one of the quick prompt buttons below or type your own question.
|
69 |
+
- The chatbot will respond with detailed NBA statistics from last night's games.
|
70 |
+
|
71 |
+
---
|
72 |
+
""")
|
73 |
+
|
74 |
+
# Quick Prompt Buttons
|
75 |
+
with gr.Row():
|
76 |
+
btn_points = Button(value="🏀 Most Points", variant="primary")
|
77 |
+
btn_rebounds = Button(value="💪 Most Rebounds", variant="primary")
|
78 |
+
btn_assist_to_turnover = Button(value="🎯 Best Assist-to-Turnover Ratio", variant="primary")
|
79 |
+
|
80 |
+
# Chatbot Interface
|
81 |
+
chatbot = Chatbot(
|
82 |
+
label="NBAi Chatbot",
|
83 |
type="messages",
|
84 |
avatar_images=(
|
85 |
None,
|
|
|
88 |
resizeable=True,
|
89 |
scale=1,
|
90 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
# Textbox for Custom User Input
|
93 |
+
text_input = Textbox(lines=1, label="Your Question")
|
94 |
+
|
95 |
+
# Bindings for Buttons
|
96 |
+
btn_points.click(
|
97 |
+
self.interact_with_agent,
|
98 |
+
["Who had the most points in last night's NBA games?", stored_messages],
|
99 |
+
chatbot
|
100 |
+
)
|
101 |
+
|
102 |
+
btn_rebounds.click(
|
103 |
+
self.interact_with_agent,
|
104 |
+
["Who had the most rebounds in last night's NBA games?", stored_messages],
|
105 |
+
chatbot
|
106 |
+
)
|
107 |
+
|
108 |
+
btn_assist_to_turnover.click(
|
109 |
+
self.interact_with_agent,
|
110 |
+
["Who had the highest ratio of assists to turnovers in last night's NBA games?", stored_messages],
|
111 |
+
chatbot
|
112 |
+
)
|
113 |
|
114 |
+
# Custom Input Submission
|
115 |
+
text_input.submit(
|
116 |
+
self.interact_with_agent,
|
117 |
+
[text_input, stored_messages],
|
118 |
+
chatbot
|
119 |
+
)
|
120 |
|
121 |
+
demo.launch(debug=True, share=True, **kwargs)
|