foster-tuning / app.py
Jasper Sands
syntax content
a92de2a
from unsloth import FastLanguageModel
from peft import PeftModel
# Load the base model with FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/Llama-3.2-3B-Instruct",
max_seq_length=2048,
dtype=None,
load_in_4bit=True
)
base_model_name = "unsloth/Llama-3.2-3B-Instruct"
adapter_path = "jaspersands/model" # Path to LoRA adapter on Hugging Face
model = PeftModel.from_pretrained(model, adapter_path)
# Code for processing a query
import pandas as pd
from unsloth.chat_templates import get_chat_template
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer, util
import nltk
# Ensure you have NLTK stopwords downloaded
nltk.download("stopwords")
from nltk.corpus import stopwords
# Step 1: Load the CSV file
file_path = 'Clean Missouri Data.csv'
df = pd.read_csv(file_path, encoding='MacRoman')
# Step 2: Define a function to search relevant policies based on the user's query using cosine similarity
def search_relevant_policies(query, df, top_n=10, max_chars = 40000):
# Convert policies into a TF-IDF matrix
tfidf = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf.fit_transform(df['Content'])
# Get the query as a TF-IDF vector
query_vector = tfidf.transform([query])
# Calculate cosine similarity between query and policies
cosine_sim = cosine_similarity(query_vector, tfidf_matrix).flatten()
# Get the top N relevant policies
top_indices = cosine_sim.argsort()[-top_n:][::-1]
relevant_policies = df.iloc[top_indices]
top_indices = cosine_sim.argsort()[-top_n:][::-1]
relevant_policies = df.iloc[top_indices].copy()
# Ensure total text is capped at max_chars
char_count = 0
valid_indices = []
for idx, row in relevant_policies.iterrows():
content_length = len(row["Content"])
# If adding this content exceeds max_chars, stop adding any further policies
if char_count + content_length > max_chars:
break
# Otherwise, keep this policy
char_count += content_length
valid_indices.append(idx)
# Filter the dataframe to only include valid rows
truncated_policies = relevant_policies.loc[valid_indices]
return truncated_policies
def get_content_after_query(response_text, query):
# Find the position of the query within the response text
query_position = response_text.lower().find(query.lower())
if query_position != -1:
# Return the content after the query position
res = response_text[query_position + len(query):].strip()
return res[11:]
else:
# If the query is not found, return the full response text as a fallback
return response_text.strip()
def process_query(query,tokenizer):
relevant_policies = search_relevant_policies(query, df)
# Step 5: Combine the relevant policies with the user's query for the model
formatted_policies = []
for index, row in relevant_policies.iterrows():
# formatted_policy = f"Title: {row['Title']}\nTerritory: {row['Territory']}\nType: {row['Type']}\nYear: {row['Year']}\nCategory: {row['Category']}\nFrom: {row['From']}\nTo: {row['To']}\nContent: {row['Content']}\nLink: {row['Link to Content']}\n"
# formatted_policies.append(formatted_policy)
formatted_policies.append(row['Content'])
relevant_policy_text = "\n\n".join(formatted_policies)
# Messages with relevant policies for the model
messages_with_relevant_policies = [
{"role": "system", "content": relevant_policy_text},
{"role": "user", "content": query},
]
# Step 6: Apply chat template and tokenize
tokenizer = get_chat_template(
tokenizer,
chat_template="llama-3.1",
)
inputs = tokenizer.apply_chat_template(
messages_with_relevant_policies,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to("cuda")
FastLanguageModel.for_inference(model)
outputs = model.generate(input_ids=inputs, max_new_tokens=512, use_cache=True, temperature=0.7, min_p=0.1)
# Step 7: Decode the output
generated_response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
response = get_content_after_query(generated_response, query)
# Step 8: Rank the top 10 policies using SBERT for the final link
# Load SBERT model
model_sbert = SentenceTransformer('all-MiniLM-L6-v2') # You can choose another SBERT model if desired
# Encode the generated response using SBERT
response_embedding = model_sbert.encode(generated_response, convert_to_tensor=True)
# Encode each policy in the top 10 list
policy_embeddings = model_sbert.encode(relevant_policies['Content'].tolist(), convert_to_tensor=True)
# Calculate cosine similarities between the generated response and each policy embedding
cosine_similarities = util.cos_sim(response_embedding, policy_embeddings).flatten()
# Identify the policy with the highest SBERT cosine similarity score
most_relevant_index = cosine_similarities.argmax().item()
most_relevant_link = relevant_policies.iloc[most_relevant_index]['Link to Content']
# Print the link to the most relevant source
return {
"response": response,
"most_relevant_link": most_relevant_link
}
# Load Google Sheets to store results
import json
from google.oauth2.service_account import Credentials
import gspread
import pandas as pd
# Load the service account JSON
json_file_path = "fostercare-449201-75a303a8c238.json" # Load the credentials for the service account
with open(json_file_path, 'r') as file:
service_account_data = json.load(file)
# Authenticate using the loaded service account data
scopes = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
creds = Credentials.from_service_account_info(service_account_data, scopes=scopes)
client = gspread.authorize(creds)
# Open the shared Google Sheet by name
spreadsheet = client.open("Foster Care RA Responses").sheet1
# Link to Google Sheet
# https://docs.google.com/spreadsheets/d/15iEcxmTgkgfcxzDGnq3i_nP1hiAXgb3RplHgqAMEyHA/edit?usp=sharing
# Code to set up Gradio GUI
import gradio as gr
def greet(query):
result_1 = process_query(query, tokenizer)
content_after_query_1 = result_1["response"]
result_2 = process_query(query, tokenizer)
content_after_query_2 = result_2["response"]
return [content_after_query_1, content_after_query_2]
def choose_preference(name, output1, output2, preference, query):
if not name:
return "Please enter your name before submitting."
if preference == "Output 1":
new_row = [query, output1, output2, name]
spreadsheet.append_row(new_row)
return f"You preferred: Output 1 - {output1}"
elif preference == "Output 2":
new_row = [query, output2, output1, name]
spreadsheet.append_row(new_row)
return f"You preferred: Output 2 - {output2}"
else:
return "No preference selected."
# Define the interface
with gr.Blocks() as demo:
# Name input
name_input = gr.Textbox(label="Enter your name")
# Input for query
query_input = gr.Textbox(label="Enter your query")
# Outputs
output_1 = gr.Textbox(label="Output 1", interactive=False)
output_2 = gr.Textbox(label="Output 2", interactive=False)
# Preference selection
preference = gr.Radio(["Output 1", "Output 2"], label="Choose your preferred output")
preference_result = gr.Textbox(label="Your Preference", interactive=False)
# Buttons
generate_button = gr.Button("Generate Outputs")
submit_button = gr.Button("Submit Preference")
# Link actions to buttons
generate_button.click(greet, inputs=query_input, outputs=[output_1, output_2])
submit_button.click(choose_preference, inputs=[name_input, output_1, output_2, preference, query_input], outputs=preference_result)
demo.launch()