jamiya / app /api /realtime.py
jameszokah's picture
Refactor websocket_conversation function to simplify access to app state: remove request parameter and directly use websocket.app for model availability checks and audio processing tasks.
a536271
"""Real-time audio conversation with WebSockets.
This module provides WebSocket endpoints for real-time audio conversation
using the CSM-1B model and WhisperX for transcription.
"""
import os
import io
import base64
import json
import time
import asyncio
import logging
import tempfile
from enum import Enum
from typing import Dict, List, Optional, Any, Union
import numpy as np
import torch
import torchaudio
from pydub import AudioSegment
import whisperx
from fastapi import APIRouter, WebSocket, WebSocketDisconnect, HTTPException, Request
from fastapi.responses import JSONResponse
# Set up logging
logger = logging.getLogger(__name__)
router = APIRouter(prefix="/realtime", tags=["Real-time Conversation"])
# Audio processing constants
SAMPLE_RATE = 16000 # Sample rate for audio processing
CHUNK_SIZE = 4096 # Chunk size for audio processing
MAX_AUDIO_DURATION = 10 # Maximum audio duration in seconds
SILENCE_THRESHOLD = 400 # Threshold for detecting silence (RMS)
MIN_SILENCE_DURATION = 0.5 # Minimum silence duration to consider a pause
# WebSocket message types
class MessageType(str, Enum):
AUDIO_CHUNK = "audio_chunk"
TRANSCRIPT = "transcript"
RESPONSE = "response"
START_SPEAKING = "start_speaking"
STOP_SPEAKING = "stop_speaking"
ERROR = "error"
STATUS = "status"
# WhisperX model cache for performance
_whisperx_model = None
_whisperx_model_lock = asyncio.Lock()
# Connection manager for websockets
class ConnectionManager:
def __init__(self):
self.active_connections: Dict[str, WebSocket] = {}
self.conversation_contexts: Dict[str, List] = {}
self.voice_preferences: Dict[str, int] = {} # Store voice preferences by client_id
async def connect(self, websocket: WebSocket, client_id: str):
"""Connect a client to the WebSocket"""
await websocket.accept()
self.active_connections[client_id] = websocket
self.conversation_contexts[client_id] = []
self.voice_preferences[client_id] = 1 # Default to echo voice
logger.info(f"Client {client_id} connected, active connections: {len(self.active_connections)}")
def disconnect(self, client_id: str):
"""Disconnect a client from the WebSocket"""
if client_id in self.active_connections:
del self.active_connections[client_id]
if client_id in self.conversation_contexts:
del self.conversation_contexts[client_id]
if client_id in self.voice_preferences:
del self.voice_preferences[client_id]
logger.info(f"Client {client_id} disconnected, active connections: {len(self.active_connections)}")
def set_voice_preference(self, client_id: str, speaker_id: int):
"""Set voice preference for a client"""
self.voice_preferences[client_id] = speaker_id
def get_voice_preference(self, client_id: str) -> int:
"""Get voice preference for a client"""
return self.voice_preferences.get(client_id, 1) # Default to echo (speaker_id=1)
async def send_message(self, client_id: str, message_type: MessageType, data: Any):
"""Send a message to a client"""
if client_id in self.active_connections:
message = {
"type": message_type,
"data": data,
"timestamp": time.time()
}
await self.active_connections[client_id].send_json(message)
def add_to_context(self, client_id: str, speaker: int, text: str, audio: Union[torch.Tensor, bytes]):
"""Add a message to the conversation context"""
if client_id in self.conversation_contexts:
# Convert audio tensor to base64 if needed
if isinstance(audio, torch.Tensor):
audio_bytes = convert_tensor_to_wav_bytes(audio)
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
elif isinstance(audio, bytes):
audio_base64 = base64.b64encode(audio).decode('utf-8')
else:
raise ValueError(f"Unsupported audio type: {type(audio)}")
# Add to context, limiting size to last 5 exchanges
self.conversation_contexts[client_id].append({
"speaker": speaker,
"text": text,
"audio": audio_base64
})
# Limit context size (keep last 5 exchanges to prevent context growing too large)
if len(self.conversation_contexts[client_id]) > 5:
self.conversation_contexts[client_id] = self.conversation_contexts[client_id][-5:]
def get_context(self, client_id: str) -> List[Dict]:
"""Get the conversation context for a client"""
return self.conversation_contexts.get(client_id, [])
# Initialize connection manager
manager = ConnectionManager()
async def load_whisperx_model(compute_type="float16"):
"""Load WhisperX model if not already loaded"""
global _whisperx_model
# Use lock to ensure model loading is thread-safe
async with _whisperx_model_lock:
# Load WhisperX model if not already loaded
if _whisperx_model is None:
logger.info("Loading WhisperX model for real-time transcription")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use small model for lower latency
_whisperx_model = whisperx.load_model(
"small", # Small model for faster processing in real-time
device,
compute_type=compute_type,
asr_options={"beam_size": 5, "vad_onset": 0.5, "vad_offset": 0.5}
)
logger.info(f"WhisperX model loaded on {device} with compute_type={compute_type}")
return _whisperx_model
def convert_tensor_to_wav_bytes(audio_tensor: torch.Tensor) -> bytes:
"""Convert audio tensor to WAV bytes"""
buf = io.BytesIO()
if len(audio_tensor.shape) == 1:
audio_tensor = audio_tensor.unsqueeze(0)
torchaudio.save(buf, audio_tensor.cpu(), SAMPLE_RATE, format="wav")
buf.seek(0)
return buf.read()
def convert_audio_data(audio_data: bytes) -> torch.Tensor:
"""Convert audio data to tensor"""
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp:
temp.write(audio_data)
temp.flush()
# Load audio
try:
# First try with torchaudio
waveform, sample_rate = torchaudio.load(temp.name)
# Convert to mono if needed
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
# Resample if needed
if sample_rate != SAMPLE_RATE:
waveform = torchaudio.functional.resample(
waveform, orig_freq=sample_rate, new_freq=SAMPLE_RATE
)
return waveform.squeeze(0)
except:
# Fallback to pydub if torchaudio fails
audio = AudioSegment.from_file(temp.name)
# Convert to mono if needed
if audio.channels > 1:
audio = audio.set_channels(1)
# Resample if needed
if audio.frame_rate != SAMPLE_RATE:
audio = audio.set_frame_rate(SAMPLE_RATE)
# Convert to numpy array
samples = np.array(audio.get_array_of_samples(), dtype=np.float32) / 32768.0
# Convert to tensor
waveform = torch.tensor(samples, dtype=torch.float32)
return waveform
async def transcribe_audio(audio_data: bytes, language: Optional[str] = None) -> Dict:
"""Transcribe audio using WhisperX"""
# Load WhisperX model
model = await load_whisperx_model()
# Save audio to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp:
temp.write(audio_data)
temp.flush()
# Transcribe with WhisperX
device = "cuda" if torch.cuda.is_available() else "cpu"
result = model.transcribe(
temp.name,
language=language,
batch_size=16 if device == "cuda" else 1
)
return result
async def generate_response(app, text: str, speaker_id: int, context: List[Dict]) -> torch.Tensor:
"""Generate response using CSM-1B model"""
generator = app.state.generator
# Validate model availability
if generator is None:
raise RuntimeError("TTS model not loaded")
# Setup context segments
segments = []
for ctx in context:
if 'speaker' not in ctx or 'text' not in ctx or 'audio' not in ctx:
continue
# Decode base64 audio
audio_data = base64.b64decode(ctx['audio'])
# Convert to tensor
audio_tensor = convert_audio_data(audio_data)
# Create segment
segments.append({
"speaker": ctx['speaker'],
"text": ctx['text'],
"audio": audio_tensor
})
# Format text for better voice consistency
from app.prompt_engineering import format_text_for_voice
# Determine voice name from speaker_id
voice_names = ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
voice_name = voice_names[speaker_id] if 0 <= speaker_id < len(voice_names) else "alloy"
formatted_text = format_text_for_voice(text, voice_name)
# Generate audio with context
audio = generator.generate(
text=formatted_text,
speaker=speaker_id,
context=segments,
max_audio_length_ms=10000, # 10 seconds max for low latency
temperature=0.65, # Lower temperature for more stable output
topk=40,
)
# Process audio for better quality
from app.voice_enhancement import process_generated_audio
processed_audio = process_generated_audio(
audio,
voice_name,
generator.sample_rate,
text
)
return processed_audio
def is_silence(audio_data: bytes, threshold=SILENCE_THRESHOLD) -> bool:
"""Check if audio is silence"""
with io.BytesIO(audio_data) as buf:
try:
audio = AudioSegment.from_file(buf)
# Get RMS (root mean square) amplitude
rms = audio.rms
return rms < threshold
except:
# If can't process, assume not silent
return False
@router.websocket("/conversation/{client_id}")
async def websocket_conversation(websocket: WebSocket, client_id: str):
"""WebSocket endpoint for real-time audio conversation"""
await manager.connect(websocket, client_id)
# Get access to app state through the websocket
app = websocket.app
# Validate model availability
if not hasattr(app.state, "generator") or app.state.generator is None:
await manager.send_message(client_id, MessageType.ERROR,
{"message": "TTS model not available"})
manager.disconnect(client_id)
return
# Initialize audio buffer and state
audio_buffer = io.BytesIO()
is_speaking = False
silence_start = None
try:
# Tell client we're ready
await manager.send_message(client_id, MessageType.STATUS,
{"status": "ready", "message": "Connection established"})
# Process messages
async for message in websocket.iter_json():
message_type = message.get("type")
if message_type == "audio_chunk":
# Get audio data
audio_data = base64.b64decode(message["data"])
# Check if silence or speech
current_is_silence = is_silence(audio_data)
# Handle silence detection for end of speech
if current_is_silence:
if not silence_start:
silence_start = time.time()
elif time.time() - silence_start > MIN_SILENCE_DURATION and is_speaking:
# End of speech detected
is_speaking = False
# Get audio from buffer
audio_buffer.seek(0)
full_audio = audio_buffer.read()
# Reset buffer
audio_buffer = io.BytesIO()
# Process the complete audio asynchronously
asyncio.create_task(process_complete_audio(
app, client_id, full_audio
))
# Notify client of end of speech
await manager.send_message(client_id, MessageType.STOP_SPEAKING, {})
else:
# Reset silence detection on new speech
silence_start = None
# Start of speech if not already speaking
if not is_speaking:
is_speaking = True
await manager.send_message(client_id, MessageType.START_SPEAKING, {})
# Add chunk to buffer if speaking
if is_speaking:
audio_buffer.write(audio_data)
elif message_type == "end_audio":
# Explicit end of audio from client
if audio_buffer.tell() > 0:
# Get audio from buffer
audio_buffer.seek(0)
full_audio = audio_buffer.read()
# Reset buffer
audio_buffer = io.BytesIO()
is_speaking = False
# Process the complete audio asynchronously
asyncio.create_task(process_complete_audio(
app, client_id, full_audio
))
elif message_type == "set_voice":
# Set the voice for the response
voice = message.get("voice", "alloy")
# Map voice string to speaker ID
voice_to_speaker = {"alloy": 0, "echo": 1, "fable": 2, "onyx": 3, "nova": 4, "shimmer": 5}
speaker_id = voice_to_speaker.get(voice, 0)
# Store in client state
manager.set_voice_preference(client_id, speaker_id)
# Send confirmation to client
await manager.send_message(client_id, MessageType.STATUS,
{"status": "voice_set", "voice": voice, "speaker_id": speaker_id})
elif message_type == "clear_context":
# Clear the conversation context
if client_id in manager.conversation_contexts:
manager.conversation_contexts[client_id] = []
await manager.send_message(client_id, MessageType.STATUS,
{"status": "context_cleared"})
except WebSocketDisconnect:
logger.info(f"Client {client_id} disconnected")
except Exception as e:
logger.error(f"Error in websocket conversation: {e}", exc_info=True)
try:
await manager.send_message(client_id, MessageType.ERROR,
{"message": str(e)})
except:
pass
finally:
manager.disconnect(client_id)
async def process_complete_audio(app, client_id: str, audio_data: bytes):
"""Process complete audio chunk from WebSocket"""
try:
# Transcribe audio
transcription = await transcribe_audio(audio_data)
# Get the text
text = transcription.get("text", "").strip()
# Send transcription to client
await manager.send_message(client_id, MessageType.TRANSCRIPT,
{"text": text, "segments": transcription.get("segments", [])})
# Skip if empty text
if not text:
return
# Add user message to context (user is always speaker 0)
manager.add_to_context(client_id, 0, text, audio_data)
# Get current context
context = manager.get_context(client_id)
# Generate response
voice_id = manager.get_voice_preference(client_id)
response_audio = await generate_response(app, text, voice_id, context)
# Convert to bytes
response_bytes = convert_tensor_to_wav_bytes(response_audio)
response_base64 = base64.b64encode(response_bytes).decode('utf-8')
# Send response to client
await manager.send_message(client_id, MessageType.RESPONSE, {
"audio": response_base64,
"speaker_id": voice_id
})
# Add assistant response to context
manager.add_to_context(client_id, voice_id, text, response_audio)
except Exception as e:
logger.error(f"Error processing audio: {e}", exc_info=True)
await manager.send_message(client_id, MessageType.ERROR,
{"message": f"Error processing audio: {str(e)}"})