Spaces:
Sleeping
Sleeping
Update local changes
Browse files- seminar_edition_ai.py +29 -8
seminar_edition_ai.py
CHANGED
@@ -112,7 +112,6 @@ def predictProclamando(queryKey):
|
|
112 |
def predictFromInit( sermonTopic, llmModelList):
|
113 |
global HISTORY_ANSWER
|
114 |
keyStr = 'SERMON_TOPIC'
|
115 |
-
|
116 |
templates = SermonGeminiPromptTemplate()
|
117 |
|
118 |
llm = llmModelList[0] if len(llmModelList) > 0 else None
|
@@ -131,6 +130,21 @@ def predictFromInit( sermonTopic, llmModelList):
|
|
131 |
keyStr = 'BIBLE_VERSICLE'
|
132 |
|
133 |
global retriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
answer = askQuestionInit(
|
135 |
'',
|
136 |
chain,
|
@@ -143,13 +157,6 @@ def predictFromInit( sermonTopic, llmModelList):
|
|
143 |
if answer != '':
|
144 |
doc = Document(page_content="text", metadata = {"source": "local"})
|
145 |
|
146 |
-
vectorstore = Chroma.from_documents(
|
147 |
-
documents = [doc],
|
148 |
-
embedding = embed_model,
|
149 |
-
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
150 |
-
collection_name="sermon_lab_ai"
|
151 |
-
)
|
152 |
-
|
153 |
retriever = vectorstore.as_retriever(
|
154 |
search_kwargs = {"k": 3}
|
155 |
)
|
@@ -169,6 +176,20 @@ def predictQuestionBuild(sermonTopic):
|
|
169 |
['SERMON_IDEA', 'context']
|
170 |
)
|
171 |
global retriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
answer = askQuestionEx(
|
173 |
'',
|
174 |
chain,
|
|
|
112 |
def predictFromInit( sermonTopic, llmModelList):
|
113 |
global HISTORY_ANSWER
|
114 |
keyStr = 'SERMON_TOPIC'
|
|
|
115 |
templates = SermonGeminiPromptTemplate()
|
116 |
|
117 |
llm = llmModelList[0] if len(llmModelList) > 0 else None
|
|
|
130 |
keyStr = 'BIBLE_VERSICLE'
|
131 |
|
132 |
global retriever
|
133 |
+
|
134 |
+
if retriever == None:
|
135 |
+
doc = Document(page_content="text", metadata={"source": "local"})
|
136 |
+
|
137 |
+
vectorstore = Chroma.from_documents(
|
138 |
+
documents=[doc],
|
139 |
+
embedding=embed_model,
|
140 |
+
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
141 |
+
collection_name="sermon_lab_ai"
|
142 |
+
)
|
143 |
+
|
144 |
+
retriever = vectorstore.as_retriever(
|
145 |
+
search_kwargs={"k": 3}
|
146 |
+
)
|
147 |
+
|
148 |
answer = askQuestionInit(
|
149 |
'',
|
150 |
chain,
|
|
|
157 |
if answer != '':
|
158 |
doc = Document(page_content="text", metadata = {"source": "local"})
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
retriever = vectorstore.as_retriever(
|
161 |
search_kwargs = {"k": 3}
|
162 |
)
|
|
|
176 |
['SERMON_IDEA', 'context']
|
177 |
)
|
178 |
global retriever
|
179 |
+
|
180 |
+
if retriever == None:
|
181 |
+
doc = Document(page_content="text", metadata={"source": "local"})
|
182 |
+
|
183 |
+
vectorstore = Chroma.from_documents(
|
184 |
+
documents=[doc],
|
185 |
+
embedding=embed_model,
|
186 |
+
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
187 |
+
collection_name="sermon_lab_ai"
|
188 |
+
)
|
189 |
+
retriever = vectorstore.as_retriever(
|
190 |
+
search_kwargs={"k": 3}
|
191 |
+
)
|
192 |
+
|
193 |
answer = askQuestionEx(
|
194 |
'',
|
195 |
chain,
|