Spaces:
Sleeping
Sleeping
Update local changes
Browse files- seminar_edition_ai.py +11 -1
seminar_edition_ai.py
CHANGED
@@ -134,13 +134,18 @@ def predictFromInit( sermonTopic, llmModelList):
|
|
134 |
keyStr = 'BIBLE_VERSICLE'
|
135 |
|
136 |
global retriever
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
if retriever == None:
|
139 |
doc = Document(page_content="text", metadata={"source": "local"})
|
140 |
|
141 |
vectorstore = Chroma.from_documents(
|
142 |
documents=[doc],
|
143 |
-
embedding=embed_model,
|
144 |
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
145 |
collection_name="sermon_lab_ai"
|
146 |
)
|
@@ -180,6 +185,11 @@ def predictQuestionBuild(sermonTopic):
|
|
180 |
['SERMON_IDEA', 'context']
|
181 |
)
|
182 |
global retriever
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
if retriever == None:
|
185 |
doc = Document(page_content="text", metadata={"source": "local"})
|
|
|
134 |
keyStr = 'BIBLE_VERSICLE'
|
135 |
|
136 |
global retriever
|
137 |
+
global embed_model
|
138 |
+
|
139 |
+
if embed_model == None:
|
140 |
+
llmBuilder = GeminiLLM()
|
141 |
+
embed_model = llmBuilder.getEmbeddingsModel()
|
142 |
|
143 |
if retriever == None:
|
144 |
doc = Document(page_content="text", metadata={"source": "local"})
|
145 |
|
146 |
vectorstore = Chroma.from_documents(
|
147 |
documents=[doc],
|
148 |
+
embedding= embed_model,
|
149 |
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
150 |
collection_name="sermon_lab_ai"
|
151 |
)
|
|
|
185 |
['SERMON_IDEA', 'context']
|
186 |
)
|
187 |
global retriever
|
188 |
+
global embed_model
|
189 |
+
|
190 |
+
if embed_model == None:
|
191 |
+
llmBuilder = GeminiLLM()
|
192 |
+
embed_model = llmBuilder.getEmbeddingsModel()
|
193 |
|
194 |
if retriever == None:
|
195 |
doc = Document(page_content="text", metadata={"source": "local"})
|