Spaces:
Sleeping
Sleeping
Add several functionalities and associated more logic on UI presentations.
Browse files- app.py +124 -109
- llm_call.py +102 -2
- seminar_edition_ai.py +60 -38
app.py
CHANGED
@@ -1,148 +1,151 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
HISTORY_ANSWER = ''
|
4 |
|
5 |
with gr.Blocks() as demo:
|
6 |
gr.Markdown("SermonLab AI Demo.")
|
7 |
with gr.Tab("Preparando mi Serm贸n"):
|
8 |
-
text_input = gr.Textbox(label
|
9 |
|
10 |
with gr.Accordion("Contemplando y Proclamando", open=False):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
text_output = gr.Textbox(label = "Respuesta", lines = 10)
|
32 |
|
33 |
text_button = gr.Button("Crear")
|
34 |
|
35 |
text_download = gr.DownloadButton(
|
36 |
-
label
|
37 |
-
value
|
38 |
-
every
|
39 |
-
|
40 |
|
41 |
inbtwContemplando.click(
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
inbtwContemplandoOne.click(
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
inbtwContemplandoTwo.click(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
inbtwContemplandoTree.click(
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
inbtwContemplandoFour.click(
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
inbtwContemplandoFourOne.click(
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
##---------------------------------------------------------------------
|
78 |
|
79 |
inbtwProclamando.click(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
inbtwProclamandoOne.click(
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
|
91 |
inbtwProclamandoTwo.click(
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
inbtwProclamandoTwoTwo.click(
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
text_button.click(
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
|
110 |
text_download.click(
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
with gr.Tab("Obtener gu铆a de la comunidad (Preguntas)"):
|
115 |
with gr.Row():
|
116 |
#Bibliografy about components
|
117 |
# File (https://www.gradio.app/docs/gradio/file)
|
118 |
# Download Button (https://www.gradio.app/docs/gradio/downloadbutton)
|
119 |
with gr.Column():
|
120 |
-
|
121 |
-
|
|
|
122 |
with gr.Column():
|
123 |
temp_slider_question = gr.Slider(
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
)
|
131 |
-
text_output_question = gr.Textbox(label
|
132 |
text_button_question = gr.Button("Crear gu铆a de preguntas")
|
133 |
text_download_question = gr.DownloadButton(
|
134 |
-
label
|
135 |
-
value
|
136 |
-
every
|
137 |
-
|
138 |
|
139 |
text_button_question.click(
|
140 |
-
|
141 |
-
|
142 |
)
|
143 |
|
144 |
-
upload_button_question.upload(upload_file_ex, inputs=
|
145 |
-
|
146 |
|
147 |
with gr.Tab("Obtener gu铆a de la comunidad (Devocionario)"):
|
148 |
with gr.Row():
|
@@ -151,31 +154,43 @@ with gr.Blocks() as demo:
|
|
151 |
# Download Button (https://www.gradio.app/docs/gradio/downloadbutton)
|
152 |
|
153 |
with gr.Column():
|
154 |
-
|
155 |
-
|
|
|
156 |
|
157 |
with gr.Column():
|
158 |
temp_slider_question = gr.Slider(
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
)
|
166 |
-
text_output_devotions = gr.Textbox(label
|
167 |
text_button_devotion = gr.Button("Crear")
|
168 |
text_download_question = gr.DownloadButton(
|
169 |
-
label
|
170 |
-
value
|
171 |
-
every
|
172 |
-
|
173 |
|
174 |
text_button_devotion.click(
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
|
|
180 |
|
181 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
2 |
+
from llm_call import GeminiLLM
|
3 |
+
from seminar_edition_ai import upload_file_ex, predictContemplando, predictProclamando, predictFromInit, \
|
4 |
+
downloadSermonFile, fileAddresToDownload, predictQuestionBuild, predictDevotionBuild, \
|
5 |
+
contemplandoQuestion, proclamandoQuestion, llm, embed_model
|
6 |
|
7 |
HISTORY_ANSWER = ''
|
8 |
|
9 |
with gr.Blocks() as demo:
|
10 |
gr.Markdown("SermonLab AI Demo.")
|
11 |
with gr.Tab("Preparando mi Serm贸n"):
|
12 |
+
text_input = gr.Textbox(label="T贸pico del serm贸n")
|
13 |
|
14 |
with gr.Accordion("Contemplando y Proclamando", open=False):
|
15 |
+
checkButton = gr.Checkbox(
|
16 |
+
value=False,
|
17 |
+
label="Mantener historial"
|
18 |
+
)
|
19 |
+
with gr.Row():
|
20 |
+
with gr.Tab("Contemplando"):
|
21 |
+
inbtwContemplando = gr.Button(f"Devocionalmente: {contemplandoQuestion['DEVOCIONALMENTE']}")
|
22 |
+
inbtwContemplandoOne = gr.Button(f"Ex茅gesis: {contemplandoQuestion['EX脡GESIS']}")
|
23 |
+
inbtwContemplandoTwo = gr.Button(f"Cristo: {contemplandoQuestion['CRISTO']}")
|
24 |
+
inbtwContemplandoTree = gr.Button(f"Arco Redentor: {contemplandoQuestion['ARCO REDENTOR']}")
|
25 |
+
inbtwContemplandoFour = gr.Button(f"Evangeli贸n: {contemplandoQuestion['EVANGELION']}")
|
26 |
+
inbtwContemplandoFourOne = gr.Button(f"Evangeli贸n: {contemplandoQuestion['EVANGELION_TWO']}")
|
27 |
+
|
28 |
+
with gr.Tab("Proclamando"):
|
29 |
+
inbtwProclamando = gr.Button(f"P煤blico: {proclamandoQuestion['P脷BLICO']}")
|
30 |
+
inbtwProclamandoOne = gr.Button(f"Historia: {proclamandoQuestion['HISTORIA']}")
|
31 |
+
inbtwProclamandoTwo = gr.Button(f"Expectativas: {proclamandoQuestion['EXPECTATIVAS']}")
|
32 |
+
inbtwProclamandoTwoTwo = gr.Button(f"Expectativas: {proclamandoQuestion['EXPECTATIVAS_TWO']}")
|
33 |
+
|
34 |
+
text_output = gr.Textbox(label="Respuesta", lines=10)
|
|
|
35 |
|
36 |
text_button = gr.Button("Crear")
|
37 |
|
38 |
text_download = gr.DownloadButton(
|
39 |
+
label="Descargar",
|
40 |
+
value=fileAddresToDownload,
|
41 |
+
every=10
|
42 |
+
)
|
43 |
|
44 |
inbtwContemplando.click(
|
45 |
+
fn=lambda x: predictContemplando(f"DEVOCIONALMENTE"),
|
46 |
+
inputs=text_input,
|
47 |
+
outputs=text_output
|
48 |
+
)
|
49 |
|
50 |
inbtwContemplandoOne.click(
|
51 |
+
fn=lambda x: predictContemplando(f"EX脡GESIS"),
|
52 |
+
inputs=text_input,
|
53 |
+
outputs=text_output
|
54 |
+
)
|
55 |
|
56 |
inbtwContemplandoTwo.click(
|
57 |
+
fn=lambda x: predictContemplando(f"CRISTO"),
|
58 |
+
inputs=text_input,
|
59 |
+
outputs=text_output
|
60 |
+
)
|
61 |
|
62 |
inbtwContemplandoTree.click(
|
63 |
+
fn=lambda x: predictContemplando(f"ARCO REDENTOR"),
|
64 |
+
inputs=text_input,
|
65 |
+
outputs=text_output
|
66 |
+
)
|
67 |
|
68 |
inbtwContemplandoFour.click(
|
69 |
+
fn=lambda x: predictContemplando(f"EVANGELION"),
|
70 |
+
inputs=text_input,
|
71 |
+
outputs=text_output
|
72 |
+
)
|
73 |
|
74 |
inbtwContemplandoFourOne.click(
|
75 |
+
fn=lambda x: predictContemplando(f"EVANGELION_TWO"),
|
76 |
+
inputs=text_input,
|
77 |
+
outputs=text_output
|
78 |
+
)
|
79 |
|
80 |
##---------------------------------------------------------------------
|
81 |
|
82 |
inbtwProclamando.click(
|
83 |
+
fn=lambda x: predictProclamando(f"P脷BLICO"),
|
84 |
+
inputs=text_input,
|
85 |
+
outputs=text_output
|
86 |
+
)
|
87 |
|
88 |
inbtwProclamandoOne.click(
|
89 |
+
fn=lambda x: predictProclamando(f"HISTORIA"),
|
90 |
+
inputs=text_input,
|
91 |
+
outputs=text_output
|
92 |
+
)
|
93 |
|
94 |
inbtwProclamandoTwo.click(
|
95 |
+
fn=lambda x: predictProclamando(f"EXPECTATIVAS"),
|
96 |
+
inputs=text_input,
|
97 |
+
outputs=text_output
|
98 |
+
)
|
99 |
|
100 |
inbtwProclamandoTwoTwo.click(
|
101 |
+
fn=lambda x: predictProclamando(f"EXPECTATIVAS_TWO"),
|
102 |
+
inputs=text_input,
|
103 |
+
outputs=text_output
|
104 |
+
)
|
|
|
105 |
|
106 |
text_button.click(
|
107 |
+
fn=predictFromInit,
|
108 |
+
inputs=text_input,
|
109 |
+
outputs=text_output
|
110 |
+
)
|
111 |
|
112 |
text_download.click(
|
113 |
+
fn=downloadSermonFile,
|
114 |
+
inputs=text_output
|
115 |
+
)
|
116 |
with gr.Tab("Obtener gu铆a de la comunidad (Preguntas)"):
|
117 |
with gr.Row():
|
118 |
#Bibliografy about components
|
119 |
# File (https://www.gradio.app/docs/gradio/file)
|
120 |
# Download Button (https://www.gradio.app/docs/gradio/downloadbutton)
|
121 |
with gr.Column():
|
122 |
+
file_input_question = gr.File()
|
123 |
+
upload_button_question = gr.UploadButton("Click to Upload a File", file_types=['.pdf'],
|
124 |
+
file_count="multiple")
|
125 |
with gr.Column():
|
126 |
temp_slider_question = gr.Slider(
|
127 |
+
minimum=1,
|
128 |
+
maximum=10,
|
129 |
+
value=1,
|
130 |
+
step=1,
|
131 |
+
interactive=True,
|
132 |
+
label="Preguntas",
|
133 |
)
|
134 |
+
text_output_question = gr.Textbox(label="Respuesta", lines=10)
|
135 |
text_button_question = gr.Button("Crear gu铆a de preguntas")
|
136 |
text_download_question = gr.DownloadButton(
|
137 |
+
label="Descargar",
|
138 |
+
value=fileAddresToDownload,
|
139 |
+
every=10
|
140 |
+
)
|
141 |
|
142 |
text_button_question.click(
|
143 |
+
fn=predictQuestionBuild,
|
144 |
+
outputs=text_output_question
|
145 |
)
|
146 |
|
147 |
+
upload_button_question.upload(upload_file_ex, inputs=upload_button_question,
|
148 |
+
outputs=[file_input_question, text_output_question])
|
149 |
|
150 |
with gr.Tab("Obtener gu铆a de la comunidad (Devocionario)"):
|
151 |
with gr.Row():
|
|
|
154 |
# Download Button (https://www.gradio.app/docs/gradio/downloadbutton)
|
155 |
|
156 |
with gr.Column():
|
157 |
+
file_input_devotions = gr.File()
|
158 |
+
upload_button_devotion = gr.UploadButton("Click to Upload a File", file_types=['.pdf'],
|
159 |
+
file_count="multiple")
|
160 |
|
161 |
with gr.Column():
|
162 |
temp_slider_question = gr.Slider(
|
163 |
+
minimum=1,
|
164 |
+
maximum=10,
|
165 |
+
value=1,
|
166 |
+
step=1,
|
167 |
+
interactive=True,
|
168 |
+
label="Cantidad",
|
169 |
)
|
170 |
+
text_output_devotions = gr.Textbox(label="Respuesta", lines=10)
|
171 |
text_button_devotion = gr.Button("Crear")
|
172 |
text_download_question = gr.DownloadButton(
|
173 |
+
label="Descargar",
|
174 |
+
value=fileAddresToDownload,
|
175 |
+
every=10
|
176 |
+
)
|
177 |
|
178 |
text_button_devotion.click(
|
179 |
+
fn=predictDevotionBuild,
|
180 |
+
outputs=text_output_devotions
|
181 |
+
)
|
182 |
+
|
183 |
+
upload_button_devotion.upload(
|
184 |
+
upload_file_ex,
|
185 |
+
inputs=upload_button_devotion,
|
186 |
+
outputs=
|
187 |
+
[file_input_devotions, text_output_devotions]
|
188 |
+
)
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
llmBuilder = GeminiLLM()
|
192 |
|
193 |
+
embed_model = llmBuilder.getEmbeddingsModel()
|
194 |
+
llm = llmBuilder.getLLM()
|
195 |
|
196 |
+
demo.launch()
|
llm_call.py
CHANGED
@@ -4,7 +4,7 @@ from langchain_community.vectorstores import Chroma
|
|
4 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
from langchain.chains import LLMChain
|
7 |
-
|
8 |
|
9 |
class GeminiLLM():
|
10 |
def __init__(self):
|
@@ -40,4 +40,104 @@ class GeminiLLM():
|
|
40 |
top_p = 1
|
41 |
)
|
42 |
|
43 |
-
return self.llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
from langchain.chains import LLMChain
|
7 |
+
|
8 |
|
9 |
class GeminiLLM():
|
10 |
def __init__(self):
|
|
|
40 |
top_p = 1
|
41 |
)
|
42 |
|
43 |
+
return self.llm
|
44 |
+
|
45 |
+
|
46 |
+
class SermonGeminiPromptTemplate():
|
47 |
+
# Example of {BIBLE_VERSICLE}
|
48 |
+
# BIBLE_VERSICLE = Juan 1:1-18
|
49 |
+
|
50 |
+
custom_prompt_template_gemini = """
|
51 |
+
Usted es pastor evang茅lico que est谩 preparando un serm贸n para su comunidad sobre {SERMON_TOPIC}
|
52 |
+
Necesito que me ayudes a encontrar los vers铆culos m谩s relevantes de la Biblia que se relacionen con este tema.
|
53 |
+
Por favor, proporci贸name una lista de {CANT_VERSICULOS} vers铆culos clave, citando el libro, cap铆tulo y vers铆culo.
|
54 |
+
Tambi茅n incluye una breve frase que resuma el significado de cada vers铆culo en relaci贸n con el tema.
|
55 |
+
Aseg煤rate de que los vers铆culos provengan de diferentes libros de la Biblia para tener una perspectiva amplia.
|
56 |
+
Formatea la salida en una lista con vi帽etas. Gracias por tu ayuda.
|
57 |
+
|
58 |
+
Context: {context}
|
59 |
+
|
60 |
+
Solo devuelve la respuesta 煤til a continuaci贸n y nada m谩s y responde siempre en espa帽ol
|
61 |
+
Respuesta 煤til:
|
62 |
+
"""
|
63 |
+
|
64 |
+
custom_prompt_template_gemini_buildSermonStart = """
|
65 |
+
Usted es pastor evang茅lico que est谩 preparando un serm贸n para su comunidad.
|
66 |
+
Necesito que me ayudes a elaborar un serm贸n sobre los vers铆culos de la biblia
|
67 |
+
en {BIBLE_VERSICLE} con la estructura:
|
68 |
+
|
69 |
+
* Introducci贸n:
|
70 |
+
|
71 |
+
* Cuerpo del Serm贸n:
|
72 |
+
|
73 |
+
* Conclusi贸n:
|
74 |
+
|
75 |
+
Context: {context}
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
custom_prompt_template_gemini_buildSermonFronContext = """
|
80 |
+
Usted es pastor evang茅lico que est谩 preparando un serm贸n para su comunidad.
|
81 |
+
|
82 |
+
{SERMON_IDEA}
|
83 |
+
|
84 |
+
Context: {context}
|
85 |
+
|
86 |
+
Ahora ay煤dame a desarrollar el serm贸n siguiente estas mismas ideas
|
87 |
+
|
88 |
+
"""
|
89 |
+
|
90 |
+
custom_prompt_template_gemini_buildSermonPrepare = """
|
91 |
+
Usted es pastor evang茅lico que est谩 preparando un serm贸n para su comunidad.
|
92 |
+
|
93 |
+
{SERMON_CONTEXT}
|
94 |
+
|
95 |
+
Context: {context}
|
96 |
+
|
97 |
+
Usando el texto anterior responde a la pregunta: {question}
|
98 |
+
|
99 |
+
"""
|
100 |
+
|
101 |
+
custom_prompt_template_gemini_buildSermonQuestion = """
|
102 |
+
Usted es pastor evang茅lico que est谩 preparando un serm贸n para su comunidad.
|
103 |
+
|
104 |
+
{SERMON_IDEA}
|
105 |
+
|
106 |
+
Context: {context}
|
107 |
+
|
108 |
+
Elabora una gu铆a de preguntas que facilite la discusi贸n b铆blica en un grupo
|
109 |
+
peque帽o de estudio b铆blico de adultos a partir del serm贸n en el texto anterior
|
110 |
+
|
111 |
+
"""
|
112 |
+
|
113 |
+
custom_prompt_template_gemini_buildSermonReflections = """
|
114 |
+
Usted es pastor evang茅lico que est谩 preparando un serm贸n para su comunidad.
|
115 |
+
|
116 |
+
{SERMON_IDEA}
|
117 |
+
|
118 |
+
Context: {context}
|
119 |
+
|
120 |
+
Elaborar una serie de 5 reflexiones a partir del serm贸n en el texto anterior
|
121 |
+
|
122 |
+
"""
|
123 |
+
|
124 |
+
sermonPromptMenuGemini = {
|
125 |
+
'BUILD_INIT': custom_prompt_template_gemini,
|
126 |
+
'BUILD_EMPTY': custom_prompt_template_gemini_buildSermonStart,
|
127 |
+
'BUILD_FROM_IDEA': custom_prompt_template_gemini_buildSermonFronContext,
|
128 |
+
'BUILD_QUESTION': custom_prompt_template_gemini_buildSermonQuestion,
|
129 |
+
'BUILD_REFLECTIONS': custom_prompt_template_gemini_buildSermonReflections,
|
130 |
+
'BUILD_PREPARE_QUESTIONS': custom_prompt_template_gemini_buildSermonPrepare
|
131 |
+
}
|
132 |
+
|
133 |
+
def __init__(self ):
|
134 |
+
self.model_name = 'gemini-pro'
|
135 |
+
|
136 |
+
def getSermonPromptTemplates(self):
|
137 |
+
return self.sermonPromptMenuGemini
|
138 |
+
|
139 |
+
def getSermonPromptTemplate(self, sermon_id):
|
140 |
+
if not sermon_id in self.sermonPromptMenuGemini.values():
|
141 |
+
return None
|
142 |
+
return self.sermonPromptMenuGemini[sermon_id]
|
143 |
+
|
seminar_edition_ai.py
CHANGED
@@ -6,8 +6,15 @@ import os
|
|
6 |
from datetime import datetime
|
7 |
import pdfkit
|
8 |
from langchain.chains.question_answering import load_qa_chain
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
bookQuestion = dict()
|
|
|
|
|
11 |
|
12 |
contemplandoQuestion = {
|
13 |
'DEVOCIONALMENTE':'驴C贸mo estimula Dios su coraz贸n a trav茅s de Su Palabra?',
|
@@ -47,11 +54,18 @@ FILE_PATH_NAME = fileAddresToDownload
|
|
47 |
def updatePromptTemplate(promptTemplate, inputVariablesTemplate):
|
48 |
prompt = PromptTemplate(template = promptTemplate,
|
49 |
input_variables = inputVariablesTemplate)
|
50 |
-
chain = load_qa_chain(
|
|
|
|
|
|
|
|
|
|
|
51 |
return chain
|
52 |
def predict(query):
|
|
|
|
|
53 |
chain = updatePromptTemplate(
|
54 |
-
|
55 |
['question','SERMON_CONTEXT','context']
|
56 |
)
|
57 |
|
@@ -89,14 +103,16 @@ def predictFromInit(sermonTopic):
|
|
89 |
global HISTORY_ANSWER
|
90 |
keyStr = 'SERMON_TOPIC'
|
91 |
|
|
|
|
|
92 |
if HISTORY_ANSWER == '':
|
93 |
chain = updatePromptTemplate(
|
94 |
-
|
95 |
[keyStr,'CANT_VERSICULOS','context']
|
96 |
)
|
97 |
else:
|
98 |
chain = updatePromptTemplate(
|
99 |
-
|
100 |
['BIBLE_VERSICLE','context']
|
101 |
)
|
102 |
keyStr = 'BIBLE_VERSICLE'
|
@@ -134,8 +150,9 @@ def predictFromInit(sermonTopic):
|
|
134 |
#
|
135 |
####
|
136 |
def predictQuestionBuild(sermonTopic):
|
|
|
137 |
chain = updatePromptTemplate(
|
138 |
-
|
139 |
['SERMON_IDEA', 'context']
|
140 |
)
|
141 |
global retriever
|
@@ -153,8 +170,9 @@ def predictQuestionBuild(sermonTopic):
|
|
153 |
#
|
154 |
####
|
155 |
def predictDevotionBuild(sermonTopic):
|
|
|
156 |
chain = updatePromptTemplate(
|
157 |
-
|
158 |
['SERMON_IDEA', 'context']
|
159 |
)
|
160 |
global retriever
|
@@ -172,11 +190,11 @@ def predictDevotionBuild(sermonTopic):
|
|
172 |
|
173 |
# A utility function for answer generation
|
174 |
def askQuestion(
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
):
|
181 |
|
182 |
#Obtener los Chunks relevantes a la pregunta en el RAG
|
@@ -199,30 +217,22 @@ def askQuestion(
|
|
199 |
"input_documents": context,
|
200 |
"question": question
|
201 |
},
|
202 |
-
return_only_outputs=True)
|
203 |
)['output_text']
|
204 |
|
205 |
|
206 |
-
A utility function for answer generation
|
207 |
def askQuestionEx(
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
):
|
214 |
|
215 |
-
#Obtener los Chunks relevantes a la pregunta en el RAG
|
216 |
-
#print(f" Question: {question}")
|
217 |
-
|
218 |
context = _retriever.get_relevant_documents(question)
|
219 |
|
220 |
-
#print("---- Contexto ----")
|
221 |
-
#print(context)
|
222 |
-
#print("____________________GLOBAL________")
|
223 |
-
|
224 |
global HISTORY_ANSWER
|
225 |
-
#print (HISTORY_ANSWER)
|
226 |
|
227 |
return (
|
228 |
_chain({
|
@@ -235,11 +245,11 @@ def askQuestionEx(
|
|
235 |
|
236 |
# A utility function for answer generation
|
237 |
def askQuestionInit(
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
):
|
244 |
|
245 |
#Obtener los Chunks relevantes a la pregunta en el RAG
|
@@ -261,12 +271,6 @@ def askQuestionInit(
|
|
261 |
)['output_text']
|
262 |
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
def downloadSermonFile(answer):
|
271 |
|
272 |
if os.path.exists(FILE_PATH_NAME):
|
@@ -277,4 +281,22 @@ def downloadSermonFile(answer):
|
|
277 |
FILE_PATH_NAME
|
278 |
)
|
279 |
|
280 |
-
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from datetime import datetime
|
7 |
import pdfkit
|
8 |
from langchain.chains.question_answering import load_qa_chain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from pathlib import Path
|
11 |
+
import os
|
12 |
+
from pypdf import PdfReader
|
13 |
|
14 |
+
from llm_call import SermonGeminiPromptTemplate
|
15 |
bookQuestion = dict()
|
16 |
+
llm = None
|
17 |
+
embed_model = None
|
18 |
|
19 |
contemplandoQuestion = {
|
20 |
'DEVOCIONALMENTE':'驴C贸mo estimula Dios su coraz贸n a trav茅s de Su Palabra?',
|
|
|
54 |
def updatePromptTemplate(promptTemplate, inputVariablesTemplate):
|
55 |
prompt = PromptTemplate(template = promptTemplate,
|
56 |
input_variables = inputVariablesTemplate)
|
57 |
+
chain = load_qa_chain(
|
58 |
+
llm,
|
59 |
+
chain_type = "stuff",
|
60 |
+
prompt = prompt
|
61 |
+
)
|
62 |
+
|
63 |
return chain
|
64 |
def predict(query):
|
65 |
+
templates = SermonGeminiPromptTemplate()
|
66 |
+
|
67 |
chain = updatePromptTemplate(
|
68 |
+
templates.getSermonPromptTemplate('BUILD_PREPARE_QUESTIONS'),
|
69 |
['question','SERMON_CONTEXT','context']
|
70 |
)
|
71 |
|
|
|
103 |
global HISTORY_ANSWER
|
104 |
keyStr = 'SERMON_TOPIC'
|
105 |
|
106 |
+
templates = SermonGeminiPromptTemplate()
|
107 |
+
|
108 |
if HISTORY_ANSWER == '':
|
109 |
chain = updatePromptTemplate(
|
110 |
+
templates.getSermonPromptTemplates('BUILD_INIT'),
|
111 |
[keyStr,'CANT_VERSICULOS','context']
|
112 |
)
|
113 |
else:
|
114 |
chain = updatePromptTemplate(
|
115 |
+
templates.getSermonPromptTemplates('BUILD_EMPTY'),
|
116 |
['BIBLE_VERSICLE','context']
|
117 |
)
|
118 |
keyStr = 'BIBLE_VERSICLE'
|
|
|
150 |
#
|
151 |
####
|
152 |
def predictQuestionBuild(sermonTopic):
|
153 |
+
templates = SermonGeminiPromptTemplate()
|
154 |
chain = updatePromptTemplate(
|
155 |
+
templates.getSermonPromptTemplates('BUILD_QUESTION'),
|
156 |
['SERMON_IDEA', 'context']
|
157 |
)
|
158 |
global retriever
|
|
|
170 |
#
|
171 |
####
|
172 |
def predictDevotionBuild(sermonTopic):
|
173 |
+
templates = SermonGeminiPromptTemplate()
|
174 |
chain = updatePromptTemplate(
|
175 |
+
templates.getSermonPromptTemplate('BUILD_REFLECTIONS'),
|
176 |
['SERMON_IDEA', 'context']
|
177 |
)
|
178 |
global retriever
|
|
|
190 |
|
191 |
# A utility function for answer generation
|
192 |
def askQuestion(
|
193 |
+
question,
|
194 |
+
_chain,
|
195 |
+
_retriever,
|
196 |
+
topic = 'el amor de Dios',
|
197 |
+
KEY = 'SERMON_TOPIC'
|
198 |
):
|
199 |
|
200 |
#Obtener los Chunks relevantes a la pregunta en el RAG
|
|
|
217 |
"input_documents": context,
|
218 |
"question": question
|
219 |
},
|
220 |
+
return_only_outputs = True)
|
221 |
)['output_text']
|
222 |
|
223 |
|
224 |
+
#A utility function for answer generation
|
225 |
def askQuestionEx(
|
226 |
+
question,
|
227 |
+
_chain,
|
228 |
+
_retriever,
|
229 |
+
topic = 'el amor de Dios',
|
230 |
+
KEY = 'SERMON_TOPIC'
|
231 |
):
|
232 |
|
|
|
|
|
|
|
233 |
context = _retriever.get_relevant_documents(question)
|
234 |
|
|
|
|
|
|
|
|
|
235 |
global HISTORY_ANSWER
|
|
|
236 |
|
237 |
return (
|
238 |
_chain({
|
|
|
245 |
|
246 |
# A utility function for answer generation
|
247 |
def askQuestionInit(
|
248 |
+
question,
|
249 |
+
_chain,
|
250 |
+
_retriever,
|
251 |
+
topic = 'el amor de Dios',
|
252 |
+
KEY = 'SERMON_TOPIC'
|
253 |
):
|
254 |
|
255 |
#Obtener los Chunks relevantes a la pregunta en el RAG
|
|
|
271 |
)['output_text']
|
272 |
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
def downloadSermonFile(answer):
|
275 |
|
276 |
if os.path.exists(FILE_PATH_NAME):
|
|
|
281 |
FILE_PATH_NAME
|
282 |
)
|
283 |
|
284 |
+
return ""
|
285 |
+
|
286 |
+
|
287 |
+
def upload_file_ex(files):
|
288 |
+
file_paths = [file.name for file in files]
|
289 |
+
|
290 |
+
for filepath in file_paths:
|
291 |
+
name = Path(filepath)
|
292 |
+
file_content = 'Empty content'
|
293 |
+
|
294 |
+
if os.path.exists(filepath):
|
295 |
+
file_content = ''
|
296 |
+
reader = PdfReader(filepath)
|
297 |
+
|
298 |
+
for page in reader.pages:
|
299 |
+
file_content += page.extract_text()
|
300 |
+
|
301 |
+
HISTORY_ANSWER = file_content
|
302 |
+
return [file_paths, file_content]
|