Spaces:
Sleeping
Sleeping
Updare retrive creation
Browse files- seminar_edition_ai.py +13 -0
seminar_edition_ai.py
CHANGED
@@ -278,6 +278,19 @@ def predictArgumentQuestionBuild(questionAnswer, llmModelList = []):
|
|
278 |
)
|
279 |
global retriever
|
280 |
global HISTORY_ANSWER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
answer = askQuestionEx(
|
282 |
"",
|
283 |
chain,
|
|
|
278 |
)
|
279 |
global retriever
|
280 |
global HISTORY_ANSWER
|
281 |
+
|
282 |
+
if retriever == None:
|
283 |
+
doc = Document(page_content="text", metadata={"source": "local"})
|
284 |
+
|
285 |
+
vectorstore = Chroma.from_documents(
|
286 |
+
documents=[doc],
|
287 |
+
embedding=embed_model,
|
288 |
+
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
|
289 |
+
collection_name="sermon_lab_ai"
|
290 |
+
)
|
291 |
+
retriever = vectorstore.as_retriever(
|
292 |
+
search_kwargs={"k": 3}
|
293 |
+
)
|
294 |
answer = askQuestionEx(
|
295 |
"",
|
296 |
chain,
|