Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,406 Bytes
36de41f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
# Modified from Flux
#
# Copyright 2024 Black Forest Labs
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math # noqa: I001
from dataclasses import dataclass
from functools import partial
import torch
import torch.nn.functional as F
from einops import rearrange
# from liger_kernel.ops.rms_norm import LigerRMSNormFunction
from torch import Tensor, nn
try:
import flash_attn
from flash_attn.flash_attn_interface import (
_flash_attn_forward,
flash_attn_varlen_func,
)
except ImportError:
flash_attn = None
flash_attn_varlen_func = None
_flash_attn_forward = None
MEMORY_LAYOUT = {
"flash": (
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
lambda x: x,
),
"torch": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
"vanilla": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
}
def attention(
q,
k,
v,
mode="torch",
drop_rate=0,
attn_mask=None,
causal=False,
cu_seqlens_q=None,
cu_seqlens_kv=None,
max_seqlen_q=None,
max_seqlen_kv=None,
batch_size=1,
):
"""
Perform QKV self attention.
Args:
q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
k (torch.Tensor): Key tensor with shape [b, s1, a, d]
v (torch.Tensor): Value tensor with shape [b, s1, a, d]
mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
drop_rate (float): Dropout rate in attention map. (default: 0)
attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
(default: None)
causal (bool): Whether to use causal attention. (default: False)
cu_seqlens_q (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
used to index into q.
cu_seqlens_kv (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
used to index into kv.
max_seqlen_q (int): The maximum sequence length in the batch of q.
max_seqlen_kv (int): The maximum sequence length in the batch of k and v.
Returns:
torch.Tensor: Output tensor after self attention with shape [b, s, ad]
"""
pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
q = pre_attn_layout(q)
k = pre_attn_layout(k)
v = pre_attn_layout(v)
if mode == "torch":
if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal
)
elif mode == "flash":
assert flash_attn_varlen_func is not None
x: torch.Tensor = flash_attn_varlen_func(
q,
k,
v,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
) # type: ignore
# x with shape [(bxs), a, d]
x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]) # type: ignore # reshape x to [b, s, a, d]
elif mode == "vanilla":
scale_factor = 1 / math.sqrt(q.size(-1))
b, a, s, _ = q.shape
s1 = k.size(2)
attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
if causal:
# Only applied to self attention
assert attn_mask is None, (
"Causal mask and attn_mask cannot be used together"
)
temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(
diagonal=0
)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(q.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
# TODO: Maybe force q and k to be float32 to avoid numerical overflow
attn = (q @ k.transpose(-2, -1)) * scale_factor
attn += attn_bias
attn = attn.softmax(dim=-1)
attn = torch.dropout(attn, p=drop_rate, train=True)
x = attn @ v
else:
raise NotImplementedError(f"Unsupported attention mode: {mode}")
x = post_attn_layout(x)
b, s, a, d = x.shape
out = x.reshape(b, s, -1)
return out
def apply_gate(x, gate=None, tanh=False):
"""AI is creating summary for apply_gate
Args:
x (torch.Tensor): input tensor.
gate (torch.Tensor, optional): gate tensor. Defaults to None.
tanh (bool, optional): whether to use tanh function. Defaults to False.
Returns:
torch.Tensor: the output tensor after apply gate.
"""
if gate is None:
return x
if tanh:
return x * gate.unsqueeze(1).tanh()
else:
return x * gate.unsqueeze(1)
class MLP(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_channels,
hidden_channels=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=None,
bias=True,
drop=0.0,
use_conv=False,
device=None,
dtype=None,
):
super().__init__()
out_features = out_features or in_channels
hidden_channels = hidden_channels or in_channels
bias = (bias, bias)
drop_probs = (drop, drop)
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
self.fc1 = linear_layer(
in_channels, hidden_channels, bias=bias[0], device=device, dtype=dtype
)
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.norm = (
norm_layer(hidden_channels, device=device, dtype=dtype)
if norm_layer is not None
else nn.Identity()
)
self.fc2 = linear_layer(
hidden_channels, out_features, bias=bias[1], device=device, dtype=dtype
)
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.norm(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class TextProjection(nn.Module):
"""
Projects text embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.linear_1 = nn.Linear(
in_features=in_channels,
out_features=hidden_size,
bias=True,
**factory_kwargs,
)
self.act_1 = act_layer()
self.linear_2 = nn.Linear(
in_features=hidden_size,
out_features=hidden_size,
bias=True,
**factory_kwargs,
)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(
self,
hidden_size,
act_layer,
frequency_embedding_size=256,
max_period=10000,
out_size=None,
dtype=None,
device=None,
):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.frequency_embedding_size = frequency_embedding_size
self.max_period = max_period
if out_size is None:
out_size = hidden_size
self.mlp = nn.Sequential(
nn.Linear(
frequency_embedding_size, hidden_size, bias=True, **factory_kwargs
),
act_layer(),
nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
)
nn.init.normal_(self.mlp[0].weight, std=0.02) # type: ignore
nn.init.normal_(self.mlp[2].weight, std=0.02) # type: ignore
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
Args:
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
dim (int): the dimension of the output.
max_period (int): controls the minimum frequency of the embeddings.
Returns:
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(
t, self.frequency_embedding_size, self.max_period
).type(self.mlp[0].weight.dtype) # type: ignore
t_emb = self.mlp(t_freq)
return t_emb
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
def rope(pos, dim: int, theta: int):
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack(
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1
)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def attention_after_rope(q, k, v, pe):
q, k = apply_rope(q, k, pe)
from .attention import attention
x = attention(q, k, v, mode="torch")
return x
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
def apply_rope(xq, xk, freqs_cis):
# 将 num_heads 和 seq_len 的维度交换回原函数的处理顺序
xq = xq.transpose(1, 2) # [batch, num_heads, seq_len, head_dim]
xk = xk.transpose(1, 2)
# 将 head_dim 拆分为复数部分(实部和虚部)
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
# 应用旋转位置编码(复数乘法)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
# 恢复张量形状并转置回目标维度顺序
xq_out = xq_out.reshape(*xq.shape).type_as(xq).transpose(1, 2)
xk_out = xk_out.reshape(*xk.shape).type_as(xk).transpose(1, 2)
return xq_out, xk_out
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
def scale_add_residual(
x: torch.Tensor, scale: torch.Tensor, residual: torch.Tensor
) -> torch.Tensor:
return x * scale + residual
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
def layernorm_and_scale_shift(
x: torch.Tensor, scale: torch.Tensor, shift: torch.Tensor
) -> torch.Tensor:
return torch.nn.functional.layer_norm(x, (x.size(-1),)) * (scale + 1) + shift
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention_after_rope(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
# @staticmethod
# def rms_norm_fast(x, weight, eps):
# return LigerRMSNormFunction.apply(
# x,
# weight,
# eps,
# 0.0,
# "gemma",
# True,
# )
@staticmethod
def rms_norm(x, weight, eps):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
return (x * rrms).to(dtype=x_dtype) * weight
def forward(self, x: Tensor):
# return self.rms_norm_fast(x, self.scale, 1e-6)
return self.rms_norm(x, self.scale, 1e-6)
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(
self.multiplier, dim=-1
)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(
self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False
):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(
self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor
) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(
img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads
)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(
txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads
)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=1)
k = torch.cat((txt_k, img_k), dim=1)
v = torch.cat((txt_v, img_v), dim=1)
attn = attention_after_rope(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img_mlp = self.img_mlp(
(1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift
)
img = scale_add_residual(img_mlp, img_mod2.gate, img)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt_mlp = self.txt_mlp(
(1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift
)
txt = scale_add_residual(txt_mlp, txt_mod2.gate, txt)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1
)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
attn = attention_after_rope(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return scale_add_residual(output, mod.gate, x)
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
|