import requests import json import os import os from dotenv import load_dotenv import streamlit as st API_KEY = st.secrets["hf_token"] def generate_schema(user_prompt): """ Generates a synthetic dataset schema using Hugging Face API. """ system_prompt = """ You are an expert data scientist designing synthetic datasets. For any given dataset description, generate: - Column names - Data types (string, int, float, date) - Approximate row count Output in **pure JSON** format like: { "columns": ["PatientID", "Age", "Gender", "Diagnosis"], "types": ["int", "int", "string", "string"], "size": 500 } """ payload = { "inputs": system_prompt + "\n\nUser request: " + user_prompt, "options": {"wait_for_model": True} } response = requests.post(HF_MODEL_URL, headers={"Authorization": f"Bearer {API_KEY}"}, json=payload) if response.status_code == 200: try: output = response.json()[0]['generated_text'] schema = json.loads(output.strip()) # Convert to JSON return schema except json.JSONDecodeError: return {"error": "Invalid JSON output from model. Try again."} else: return {"error": f"API request failed. Status Code: {response.status_code}"}