import streamlit as st import pandas as pd import os import json import requests from ctgan import CTGAN from sklearn.preprocessing import LabelEncoder def generate_schema(prompt): """Fetches schema from Hugging Face Spaces API.""" API_URL = "https://infinitymatter-synthetic-data-generator.hf.space/" # Fetch API token securely hf_token = st.secrets["hf_token"] headers = {"Authorization": f"Bearer {hf_token}"} payload = {"data": [prompt]} try: response = requests.post(API_URL, headers=headers, json=payload) response.raise_for_status() schema = response.json() if 'columns' not in schema or 'types' not in schema or 'size' not in schema: raise ValueError("Invalid schema format!") return schema except requests.exceptions.RequestException as e: st.error(f"❌ API request failed: {e}") return None except json.JSONDecodeError: st.error("❌ Failed to parse JSON response.") return None def train_and_generate_synthetic(real_data, schema, output_path): """Trains a CTGAN model and generates synthetic data.""" categorical_cols = [col for col, dtype in zip(schema['columns'], schema['types']) if dtype == 'string'] # Store label encoders label_encoders = {} for col in categorical_cols: le = LabelEncoder() real_data[col] = le.fit_transform(real_data[col]) label_encoders[col] = le # Train CTGAN gan = CTGAN(epochs=300) gan.fit(real_data, categorical_cols) # Generate synthetic data synthetic_data = gan.sample(schema['size']) # Decode categorical columns for col in categorical_cols: synthetic_data[col] = label_encoders[col].inverse_transform(synthetic_data[col]) # Save to CSV os.makedirs('outputs', exist_ok=True) synthetic_data.to_csv(output_path, index=False) st.success(f"✅ Synthetic data saved to {output_path}") def fetch_data(domain): """Fetches real data for the given domain and ensures it's a valid DataFrame.""" data_path = f"datasets/{domain}.csv" if os.path.exists(data_path): df = pd.read_csv(data_path) if not isinstance(df, pd.DataFrame) or df.empty: raise ValueError("❌ Loaded data is invalid!") return df else: st.error(f"❌ Dataset for {domain} not found.") return None st.title("✨ AI-Powered Synthetic Dataset Generator") st.write("Give a short description of the dataset you need, and AI will generate it for you using real data + GANs!") # User input user_prompt = st.text_input("Describe the dataset (e.g., 'Create dataset for hospital patients')", "") domain = st.selectbox("Select Domain for Real Data", ["healthcare", "finance", "retail", "other"]) data = None if st.button("Generate Schema"): if user_prompt.strip(): with st.spinner("Generating schema..."): schema = generate_schema(user_prompt) if schema is None: st.error("❌ Schema generation failed. Please check API response.") else: st.success("✅ Schema generated successfully!") st.json(schema) data = fetch_data(domain) else: st.warning("⚠️ Please enter a dataset description before generating the schema.") if data is not None and schema is not None: output_path = "outputs/synthetic_data.csv" if st.button("Generate Synthetic Data"): with st.spinner("Training GAN and generating synthetic data..."): train_and_generate_synthetic(data, schema, output_path) with open(output_path, "rb") as file: st.download_button("Download Synthetic Data", file, file_name="synthetic_data.csv", mime="text/csv")