Spaces:
Running
Running
Upload 4 files
Browse files- qtAnswering/app.py +73 -0
- qtAnswering/appImage.py +60 -0
- qtAnswering/main.py +72 -0
- qtAnswering/requirements.txt +23 -0
qtAnswering/app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### β
app.py β Document QA Backend (Cleaned)
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from fastapi.responses import FileResponse, JSONResponse
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
import easyocr
|
6 |
+
import openpyxl
|
7 |
+
import pptx
|
8 |
+
import docx
|
9 |
+
from transformers import pipeline
|
10 |
+
from gtts import gTTS
|
11 |
+
import tempfile
|
12 |
+
import os
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
17 |
+
reader = easyocr.Reader(['en', 'fr'])
|
18 |
+
|
19 |
+
def extract_text_from_pdf(pdf_file):
|
20 |
+
try:
|
21 |
+
with fitz.open(pdf_file) as doc:
|
22 |
+
return "\n".join(page.get_text("text") for page in doc)
|
23 |
+
except Exception as e:
|
24 |
+
return f"Error reading PDF: {e}"
|
25 |
+
|
26 |
+
def extract_text_from_docx(docx_file):
|
27 |
+
doc = docx.Document(docx_file)
|
28 |
+
return "\n".join(p.text for p in doc.paragraphs if p.text.strip())
|
29 |
+
|
30 |
+
def extract_text_from_pptx(pptx_file):
|
31 |
+
try:
|
32 |
+
prs = pptx.Presentation(pptx_file)
|
33 |
+
return "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
|
34 |
+
except Exception as e:
|
35 |
+
return f"Error reading PPTX: {e}"
|
36 |
+
|
37 |
+
def extract_text_from_xlsx(xlsx_file):
|
38 |
+
try:
|
39 |
+
wb = openpyxl.load_workbook(xlsx_file)
|
40 |
+
return "\n".join(" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True))
|
41 |
+
except Exception as e:
|
42 |
+
return f"Error reading XLSX: {e}"
|
43 |
+
|
44 |
+
def answer_question_from_doc(file, question):
|
45 |
+
ext = file.filename.split(".")[-1].lower()
|
46 |
+
file_path = f"/tmp/{file.filename}"
|
47 |
+
|
48 |
+
with open(file_path, "wb") as f:
|
49 |
+
f.write(file.read())
|
50 |
+
|
51 |
+
if ext == "pdf":
|
52 |
+
context = extract_text_from_pdf(file_path)
|
53 |
+
elif ext == "docx":
|
54 |
+
context = extract_text_from_docx(file_path)
|
55 |
+
elif ext == "pptx":
|
56 |
+
context = extract_text_from_pptx(file_path)
|
57 |
+
elif ext == "xlsx":
|
58 |
+
context = extract_text_from_xlsx(file_path)
|
59 |
+
else:
|
60 |
+
return "Unsupported file format.", None
|
61 |
+
|
62 |
+
if not context.strip():
|
63 |
+
return "No text found in the document.", None
|
64 |
+
|
65 |
+
try:
|
66 |
+
result = qa_model({"question": question, "context": context})
|
67 |
+
answer = result["answer"]
|
68 |
+
tts = gTTS(answer)
|
69 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
70 |
+
tts.save(tmp.name)
|
71 |
+
return answer, tmp.name
|
72 |
+
except Exception as e:
|
73 |
+
return f"Error generating answer: {e}", None
|
qtAnswering/appImage.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from fastapi.responses import RedirectResponse, JSONResponse, FileResponse
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering, pipeline
|
7 |
+
from gtts import gTTS
|
8 |
+
import easyocr
|
9 |
+
import torch
|
10 |
+
import tempfile
|
11 |
+
import numpy as np
|
12 |
+
from io import BytesIO
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
17 |
+
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
18 |
+
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
19 |
+
reader = easyocr.Reader(['en', 'fr'])
|
20 |
+
|
21 |
+
def classify_question(question: str):
|
22 |
+
q = question.lower()
|
23 |
+
if any(w in q for w in ["text", "say", "written", "read"]):
|
24 |
+
return "ocr"
|
25 |
+
if any(w in q for w in ["caption", "describe", "what is in the image"]):
|
26 |
+
return "caption"
|
27 |
+
return "vqa"
|
28 |
+
|
29 |
+
def answer_question_from_image(image, question):
|
30 |
+
if image is None or not question.strip():
|
31 |
+
return "Please upload an image and ask a question.", None
|
32 |
+
|
33 |
+
mode = classify_question(question)
|
34 |
+
|
35 |
+
try:
|
36 |
+
if mode == "ocr":
|
37 |
+
result = reader.readtext(np.array(image))
|
38 |
+
answer = " ".join([entry[1] for entry in result]) or "No readable text found."
|
39 |
+
|
40 |
+
elif mode == "caption":
|
41 |
+
answer = captioner(image)[0]['generated_text']
|
42 |
+
|
43 |
+
else:
|
44 |
+
inputs = vqa_processor(image, question, return_tensors="pt")
|
45 |
+
with torch.no_grad():
|
46 |
+
outputs = vqa_model(**inputs)
|
47 |
+
predicted_id = outputs.logits.argmax(-1).item()
|
48 |
+
answer = vqa_model.config.id2label[predicted_id]
|
49 |
+
|
50 |
+
tts = gTTS(text=answer)
|
51 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
52 |
+
tts.save(tmp.name)
|
53 |
+
return answer, tmp.name
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
return f"Error: {e}", None
|
57 |
+
|
58 |
+
@app.get("/")
|
59 |
+
def home():
|
60 |
+
return RedirectResponse(url="/templates/home.html")
|
qtAnswering/main.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, Form, Request
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
|
4 |
+
from fastapi.staticfiles import StaticFiles
|
5 |
+
from fastapi.templating import Jinja2Templates
|
6 |
+
import shutil, os
|
7 |
+
from tempfile import gettempdir
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# β
CORS to allow frontend access
|
12 |
+
app.add_middleware(
|
13 |
+
CORSMiddleware,
|
14 |
+
allow_origins=["*"],
|
15 |
+
allow_credentials=True,
|
16 |
+
allow_methods=["*"],
|
17 |
+
allow_headers=["*"],
|
18 |
+
)
|
19 |
+
|
20 |
+
# β
Static assets
|
21 |
+
app.mount("/resources", StaticFiles(directory="resources"), name="resources")
|
22 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
23 |
+
|
24 |
+
# β
Jinja2 Templates
|
25 |
+
templates = Jinja2Templates(directory="templates")
|
26 |
+
|
27 |
+
# β
Serve Homepage
|
28 |
+
@app.get("/", response_class=HTMLResponse)
|
29 |
+
async def serve_home(request: Request):
|
30 |
+
return templates.TemplateResponse("home.html", {"request": request})
|
31 |
+
|
32 |
+
# β
Predict endpoint (handles image + document)
|
33 |
+
@app.post("/predict")
|
34 |
+
async def predict(question: str = Form(...), file: UploadFile = Form(...)):
|
35 |
+
try:
|
36 |
+
temp_path = f"temp_{file.filename}"
|
37 |
+
with open(temp_path, "wb") as f:
|
38 |
+
shutil.copyfileobj(file.file, f)
|
39 |
+
|
40 |
+
is_image = file.content_type.startswith("image/")
|
41 |
+
|
42 |
+
if is_image:
|
43 |
+
from appImage import answer_question_from_image
|
44 |
+
from PIL import Image
|
45 |
+
image = Image.open(temp_path).convert("RGB")
|
46 |
+
answer, audio_path = answer_question_from_image(image, question)
|
47 |
+
|
48 |
+
else:
|
49 |
+
from app import answer_question_from_doc
|
50 |
+
class NamedFile:
|
51 |
+
def __init__(self, name): self.filename = name
|
52 |
+
def read(self): return open(self.filename, "rb").read()
|
53 |
+
answer, audio_path = answer_question_from_doc(NamedFile(temp_path), question)
|
54 |
+
|
55 |
+
os.remove(temp_path)
|
56 |
+
|
57 |
+
if audio_path and os.path.exists(audio_path):
|
58 |
+
return JSONResponse({
|
59 |
+
"answer": answer,
|
60 |
+
"audio": f"/audio/{os.path.basename(audio_path)}"
|
61 |
+
})
|
62 |
+
else:
|
63 |
+
return JSONResponse({"answer": answer})
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
return JSONResponse({"error": str(e)}, status_code=500)
|
67 |
+
|
68 |
+
# β
Serve audio
|
69 |
+
@app.get("/audio/{filename}")
|
70 |
+
async def get_audio(filename: str):
|
71 |
+
filepath = os.path.join(gettempdir(), filename)
|
72 |
+
return FileResponse(filepath, media_type="audio/mpeg")
|
qtAnswering/requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
gradio==3.50.2
|
4 |
+
pandas
|
5 |
+
matplotlib
|
6 |
+
seaborn
|
7 |
+
transformers
|
8 |
+
torch
|
9 |
+
pdfplumber
|
10 |
+
python-docx
|
11 |
+
pydantic<2.0
|
12 |
+
tools
|
13 |
+
openpyxl
|
14 |
+
pytesseract
|
15 |
+
deep-translator
|
16 |
+
frontend
|
17 |
+
pillow
|
18 |
+
easyocr
|
19 |
+
python-pptx
|
20 |
+
pymupdf
|
21 |
+
tika
|
22 |
+
hf_xet
|
23 |
+
gTTS
|