Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,57 @@
|
|
1 |
-
#
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
-
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr,
|
4 |
from nltk.tokenize import sent_tokenize
|
5 |
from fpdf import FPDF
|
6 |
from gtts import gTTS
|
7 |
|
8 |
nltk.download('punkt', quiet=True)
|
9 |
|
10 |
-
# Load
|
11 |
MODEL_NAME = "facebook/bart-large-cnn"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
|
|
14 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
|
15 |
reader = easyocr.Reader(['en'], gpu=False)
|
16 |
|
17 |
summary_cache = {}
|
18 |
|
19 |
-
def clean_text(text):
|
20 |
text = re.sub(r'\s+', ' ', text)
|
21 |
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
|
22 |
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
|
23 |
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
|
24 |
return text.strip()
|
25 |
|
26 |
-
def extract_text(file_path,
|
27 |
try:
|
28 |
-
if
|
29 |
with fitz.open(file_path) as doc:
|
30 |
text = "\n".join(page.get_text("text") for page in doc)
|
31 |
if len(text.strip()) < 50:
|
32 |
images = [page.get_pixmap() for page in doc]
|
33 |
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
34 |
images[0].save(temp_img.name)
|
35 |
-
|
36 |
os.unlink(temp_img.name)
|
37 |
-
|
38 |
-
elif file_extension in ["docx"]:
|
39 |
doc = docx.Document(file_path)
|
40 |
text = "\n".join(p.text for p in doc.paragraphs)
|
41 |
-
elif
|
42 |
prs = pptx.Presentation(file_path)
|
43 |
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
|
44 |
-
elif
|
45 |
wb = openpyxl.load_workbook(file_path, read_only=True)
|
46 |
text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
|
47 |
else:
|
48 |
-
|
49 |
-
|
50 |
-
return clean_text(text), ""
|
51 |
except Exception as e:
|
52 |
-
return "", f"
|
53 |
|
54 |
-
|
|
|
|
|
55 |
sentences = sent_tokenize(text)
|
56 |
chunks, current_chunk = [], ""
|
57 |
for sentence in sentences:
|
@@ -64,21 +64,36 @@ def chunk_text(text, max_tokens=950):
|
|
64 |
chunks.append(current_chunk.strip())
|
65 |
return chunks
|
66 |
|
67 |
-
def generate_summary(text, length="medium"):
|
68 |
cache_key = hashlib.md5((text + length).encode()).hexdigest()
|
69 |
if cache_key in summary_cache:
|
70 |
return summary_cache[cache_key]
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
chunks = chunk_text(text)
|
76 |
-
summaries = summarizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
final_summary = " ".join(s['summary_text'] for s in summaries)
|
|
|
|
|
|
|
78 |
summary_cache[cache_key] = final_summary
|
79 |
return final_summary
|
80 |
|
81 |
-
def text_to_speech(text):
|
82 |
try:
|
83 |
tts = gTTS(text)
|
84 |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
@@ -87,12 +102,10 @@ def text_to_speech(text):
|
|
87 |
except:
|
88 |
return ""
|
89 |
|
90 |
-
def create_pdf(summary,
|
91 |
try:
|
92 |
pdf = FPDF()
|
93 |
pdf.add_page()
|
94 |
-
pdf.set_font("Arial", 'B', 16)
|
95 |
-
pdf.cell(200, 10, "Summary", ln=True, align='C')
|
96 |
pdf.set_font("Arial", size=12)
|
97 |
pdf.multi_cell(0, 10, summary)
|
98 |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
@@ -100,3 +113,29 @@ def create_pdf(summary, original_filename):
|
|
100 |
return temp_pdf.name
|
101 |
except:
|
102 |
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, datetime, hashlib
|
4 |
from nltk.tokenize import sent_tokenize
|
5 |
from fpdf import FPDF
|
6 |
from gtts import gTTS
|
7 |
|
8 |
nltk.download('punkt', quiet=True)
|
9 |
|
10 |
+
# Load models
|
11 |
MODEL_NAME = "facebook/bart-large-cnn"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
14 |
+
model.eval()
|
15 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
|
16 |
reader = easyocr.Reader(['en'], gpu=False)
|
17 |
|
18 |
summary_cache = {}
|
19 |
|
20 |
+
def clean_text(text: str) -> str:
|
21 |
text = re.sub(r'\s+', ' ', text)
|
22 |
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
|
23 |
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
|
24 |
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
|
25 |
return text.strip()
|
26 |
|
27 |
+
def extract_text(file_path: str, ext: str):
|
28 |
try:
|
29 |
+
if ext == "pdf":
|
30 |
with fitz.open(file_path) as doc:
|
31 |
text = "\n".join(page.get_text("text") for page in doc)
|
32 |
if len(text.strip()) < 50:
|
33 |
images = [page.get_pixmap() for page in doc]
|
34 |
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
35 |
images[0].save(temp_img.name)
|
36 |
+
text = "\n".join(reader.readtext(temp_img.name, detail=0))
|
37 |
os.unlink(temp_img.name)
|
38 |
+
elif ext == "docx":
|
|
|
39 |
doc = docx.Document(file_path)
|
40 |
text = "\n".join(p.text for p in doc.paragraphs)
|
41 |
+
elif ext == "pptx":
|
42 |
prs = pptx.Presentation(file_path)
|
43 |
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
|
44 |
+
elif ext == "xlsx":
|
45 |
wb = openpyxl.load_workbook(file_path, read_only=True)
|
46 |
text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
|
47 |
else:
|
48 |
+
text = ""
|
|
|
|
|
49 |
except Exception as e:
|
50 |
+
return "", f"Error extracting text: {str(e)}"
|
51 |
|
52 |
+
return clean_text(text), ""
|
53 |
+
|
54 |
+
def chunk_text(text: str, max_tokens: int = 950):
|
55 |
sentences = sent_tokenize(text)
|
56 |
chunks, current_chunk = [], ""
|
57 |
for sentence in sentences:
|
|
|
64 |
chunks.append(current_chunk.strip())
|
65 |
return chunks
|
66 |
|
67 |
+
def generate_summary(text: str, length: str = "medium"):
|
68 |
cache_key = hashlib.md5((text + length).encode()).hexdigest()
|
69 |
if cache_key in summary_cache:
|
70 |
return summary_cache[cache_key]
|
71 |
|
72 |
+
length_params = {
|
73 |
+
"short": {"max_length": 80, "min_length": 30},
|
74 |
+
"medium": {"max_length": 200, "min_length": 80},
|
75 |
+
"long": {"max_length": 300, "min_length": 210}
|
76 |
+
}
|
77 |
|
78 |
chunks = chunk_text(text)
|
79 |
+
summaries = summarizer(
|
80 |
+
chunks,
|
81 |
+
max_length=length_params[length]["max_length"],
|
82 |
+
min_length=length_params[length]["min_length"],
|
83 |
+
do_sample=False,
|
84 |
+
truncation=True,
|
85 |
+
no_repeat_ngram_size=2,
|
86 |
+
num_beams=2,
|
87 |
+
early_stopping=True
|
88 |
+
)
|
89 |
final_summary = " ".join(s['summary_text'] for s in summaries)
|
90 |
+
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
|
91 |
+
final_summary = final_summary if len(final_summary) > 25 else "Summary too short."
|
92 |
+
|
93 |
summary_cache[cache_key] = final_summary
|
94 |
return final_summary
|
95 |
|
96 |
+
def text_to_speech(text: str):
|
97 |
try:
|
98 |
tts = gTTS(text)
|
99 |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
|
|
102 |
except:
|
103 |
return ""
|
104 |
|
105 |
+
def create_pdf(summary: str, filename: str):
|
106 |
try:
|
107 |
pdf = FPDF()
|
108 |
pdf.add_page()
|
|
|
|
|
109 |
pdf.set_font("Arial", size=12)
|
110 |
pdf.multi_cell(0, 10, summary)
|
111 |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
|
|
113 |
return temp_pdf.name
|
114 |
except:
|
115 |
return ""
|
116 |
+
|
117 |
+
async def summarize_document(file, length="medium"):
|
118 |
+
contents = await file.read()
|
119 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
120 |
+
tmp_file.write(contents)
|
121 |
+
tmp_path = tmp_file.name
|
122 |
+
|
123 |
+
ext = file.filename.split('.')[-1].lower()
|
124 |
+
text, error = extract_text(tmp_path, ext)
|
125 |
+
|
126 |
+
if error:
|
127 |
+
raise Exception(error)
|
128 |
+
|
129 |
+
if not text or len(text.split()) < 30:
|
130 |
+
raise Exception("Document too short to summarize.")
|
131 |
+
|
132 |
+
summary = generate_summary(text, length)
|
133 |
+
audio_path = text_to_speech(summary)
|
134 |
+
pdf_path = create_pdf(summary, file.filename)
|
135 |
+
|
136 |
+
result = {"summary": summary}
|
137 |
+
if audio_path:
|
138 |
+
result["audioUrl"] = f"/files/{os.path.basename(audio_path)}"
|
139 |
+
if pdf_path:
|
140 |
+
result["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}"
|
141 |
+
return result
|