Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,31 @@
|
|
1 |
-
|
2 |
-
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
-
import fitz
|
5 |
-
import docx
|
6 |
-
import pptx
|
7 |
-
import openpyxl
|
8 |
-
import re
|
9 |
-
import nltk
|
10 |
-
import torch
|
11 |
from nltk.tokenize import sent_tokenize
|
12 |
-
from gtts import gTTS
|
13 |
from fpdf import FPDF
|
14 |
-
import
|
15 |
-
import os
|
16 |
-
import easyocr
|
17 |
-
import datetime
|
18 |
-
import hashlib
|
19 |
|
20 |
-
# Initialize
|
21 |
nltk.download('punkt', quiet=True)
|
22 |
-
app = FastAPI()
|
23 |
|
24 |
-
# Load
|
25 |
MODEL_NAME = "facebook/bart-large-cnn"
|
26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
28 |
-
model.eval()
|
29 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
|
|
|
30 |
|
31 |
-
# Load OCR Reader
|
32 |
-
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
|
33 |
-
|
34 |
-
# Cache
|
35 |
summary_cache = {}
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
def clean_text(text: str) -> str:
|
40 |
text = re.sub(r'\s+', ' ', text)
|
41 |
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
|
42 |
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
|
43 |
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
|
44 |
return text.strip()
|
45 |
|
46 |
-
def extract_text(file_path
|
47 |
try:
|
48 |
-
if file_extension
|
49 |
with fitz.open(file_path) as doc:
|
50 |
text = "\n".join(page.get_text("text") for page in doc)
|
51 |
if len(text.strip()) < 50:
|
@@ -55,146 +35,68 @@ def extract_text(file_path: str, file_extension: str):
|
|
55 |
ocr_result = reader.readtext(temp_img.name, detail=0)
|
56 |
os.unlink(temp_img.name)
|
57 |
text = "\n".join(ocr_result) if ocr_result else text
|
58 |
-
|
59 |
-
|
60 |
-
elif file_extension == "docx":
|
61 |
doc = docx.Document(file_path)
|
62 |
-
|
63 |
-
|
64 |
-
elif file_extension == "pptx":
|
65 |
prs = pptx.Presentation(file_path)
|
66 |
-
text =
|
67 |
-
|
68 |
-
|
69 |
-
elif file_extension == "xlsx":
|
70 |
wb = openpyxl.load_workbook(file_path, read_only=True)
|
71 |
-
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
return clean_text("\n".join(ocr_result)), ""
|
77 |
-
|
78 |
-
return "", "Unsupported file format"
|
79 |
except Exception as e:
|
80 |
-
return "", f"
|
81 |
-
|
82 |
-
def chunk_text(text: str, max_tokens: int = 950):
|
83 |
-
try:
|
84 |
-
sentences = sent_tokenize(text)
|
85 |
-
except:
|
86 |
-
words = text.split()
|
87 |
-
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
|
88 |
|
89 |
-
|
90 |
-
|
|
|
91 |
for sentence in sentences:
|
92 |
-
|
93 |
-
if token_length <= max_tokens:
|
94 |
current_chunk += " " + sentence
|
95 |
else:
|
96 |
chunks.append(current_chunk.strip())
|
97 |
current_chunk = sentence
|
98 |
-
|
99 |
if current_chunk:
|
100 |
chunks.append(current_chunk.strip())
|
101 |
-
|
102 |
return chunks
|
103 |
|
104 |
-
def generate_summary(text
|
105 |
cache_key = hashlib.md5((text + length).encode()).hexdigest()
|
106 |
if cache_key in summary_cache:
|
107 |
return summary_cache[cache_key]
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
"medium": {"max_length": 200, "min_length": 80},
|
112 |
-
"long": {"max_length": 300, "min_length": 210}
|
113 |
-
}
|
114 |
-
chunks = chunk_text(text)
|
115 |
-
|
116 |
-
summaries = summarizer(
|
117 |
-
chunks,
|
118 |
-
max_length=length_params[length]["max_length"],
|
119 |
-
min_length=length_params[length]["min_length"],
|
120 |
-
do_sample=False,
|
121 |
-
truncation=True,
|
122 |
-
no_repeat_ngram_size=2,
|
123 |
-
num_beams=2,
|
124 |
-
early_stopping=True
|
125 |
-
)
|
126 |
-
summary_texts = [s['summary_text'] for s in summaries]
|
127 |
-
|
128 |
-
final_summary = " ".join(summary_texts)
|
129 |
-
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
|
130 |
-
final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
|
131 |
|
|
|
|
|
|
|
132 |
summary_cache[cache_key] = final_summary
|
133 |
return final_summary
|
134 |
|
135 |
-
def text_to_speech(text
|
136 |
try:
|
137 |
tts = gTTS(text)
|
138 |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
139 |
tts.save(temp_audio.name)
|
140 |
return temp_audio.name
|
141 |
-
except
|
142 |
return ""
|
143 |
|
144 |
-
def create_pdf(summary
|
145 |
try:
|
146 |
pdf = FPDF()
|
147 |
pdf.add_page()
|
148 |
pdf.set_font("Arial", 'B', 16)
|
149 |
-
pdf.cell(200, 10,
|
150 |
pdf.set_font("Arial", size=12)
|
151 |
-
pdf.
|
152 |
-
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
|
153 |
-
pdf.ln(10)
|
154 |
-
pdf.multi_cell(0, 10, txt=summary)
|
155 |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
156 |
pdf.output(temp_pdf.name)
|
157 |
return temp_pdf.name
|
158 |
-
except
|
159 |
return ""
|
160 |
-
|
161 |
-
# --- API Endpoints ---
|
162 |
-
|
163 |
-
@app.post("/summarize/")
|
164 |
-
async def summarize_api(file: UploadFile = File(...), length: str = Form("medium")):
|
165 |
-
contents = await file.read()
|
166 |
-
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
167 |
-
tmp_file.write(contents)
|
168 |
-
tmp_path = tmp_file.name
|
169 |
-
|
170 |
-
file_ext = tmp_path.split('.')[-1].lower()
|
171 |
-
text, error = extract_text(tmp_path, file_ext)
|
172 |
-
|
173 |
-
if error:
|
174 |
-
return JSONResponse({"detail": error}, status_code=400)
|
175 |
-
|
176 |
-
if not text or len(text.split()) < 30:
|
177 |
-
return JSONResponse({"detail": "Document too short to summarize"}, status_code=400)
|
178 |
-
|
179 |
-
summary = generate_summary(text, length)
|
180 |
-
audio_path = text_to_speech(summary)
|
181 |
-
pdf_path = create_pdf(summary, file.filename)
|
182 |
-
|
183 |
-
response = {"summary": summary}
|
184 |
-
if audio_path:
|
185 |
-
response["audioUrl"] = f"/files/{os.path.basename(audio_path)}"
|
186 |
-
if pdf_path:
|
187 |
-
response["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}"
|
188 |
-
|
189 |
-
return JSONResponse(response)
|
190 |
-
|
191 |
-
@app.get("/files/{file_name}")
|
192 |
-
async def serve_file(file_name: str):
|
193 |
-
path = os.path.join(tempfile.gettempdir(), file_name)
|
194 |
-
if os.path.exists(path):
|
195 |
-
return FileResponse(path)
|
196 |
-
return JSONResponse({"error": "File not found"}, status_code=404)
|
197 |
-
|
198 |
-
@app.get("/")
|
199 |
-
def home():
|
200 |
-
return RedirectResponse(url="/")
|
|
|
1 |
+
# app_logic.py
|
|
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, hashlib, datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from nltk.tokenize import sent_tokenize
|
|
|
5 |
from fpdf import FPDF
|
6 |
+
from gtts import gTTS
|
|
|
|
|
|
|
|
|
7 |
|
|
|
8 |
nltk.download('punkt', quiet=True)
|
|
|
9 |
|
10 |
+
# Load once
|
11 |
MODEL_NAME = "facebook/bart-large-cnn"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
|
|
14 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
|
15 |
+
reader = easyocr.Reader(['en'], gpu=False)
|
16 |
|
|
|
|
|
|
|
|
|
17 |
summary_cache = {}
|
18 |
|
19 |
+
def clean_text(text):
|
|
|
|
|
20 |
text = re.sub(r'\s+', ' ', text)
|
21 |
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
|
22 |
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
|
23 |
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
|
24 |
return text.strip()
|
25 |
|
26 |
+
def extract_text(file_path, file_extension):
|
27 |
try:
|
28 |
+
if file_extension in ["pdf"]:
|
29 |
with fitz.open(file_path) as doc:
|
30 |
text = "\n".join(page.get_text("text") for page in doc)
|
31 |
if len(text.strip()) < 50:
|
|
|
35 |
ocr_result = reader.readtext(temp_img.name, detail=0)
|
36 |
os.unlink(temp_img.name)
|
37 |
text = "\n".join(ocr_result) if ocr_result else text
|
38 |
+
elif file_extension in ["docx"]:
|
|
|
|
|
39 |
doc = docx.Document(file_path)
|
40 |
+
text = "\n".join(p.text for p in doc.paragraphs)
|
41 |
+
elif file_extension in ["pptx"]:
|
|
|
42 |
prs = pptx.Presentation(file_path)
|
43 |
+
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
|
44 |
+
elif file_extension in ["xlsx"]:
|
|
|
|
|
45 |
wb = openpyxl.load_workbook(file_path, read_only=True)
|
46 |
+
text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
|
47 |
+
else:
|
48 |
+
return "", "Unsupported file type"
|
49 |
+
|
50 |
+
return clean_text(text), ""
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
+
return "", f"Extraction error: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
def chunk_text(text, max_tokens=950):
|
55 |
+
sentences = sent_tokenize(text)
|
56 |
+
chunks, current_chunk = [], ""
|
57 |
for sentence in sentences:
|
58 |
+
if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens:
|
|
|
59 |
current_chunk += " " + sentence
|
60 |
else:
|
61 |
chunks.append(current_chunk.strip())
|
62 |
current_chunk = sentence
|
|
|
63 |
if current_chunk:
|
64 |
chunks.append(current_chunk.strip())
|
|
|
65 |
return chunks
|
66 |
|
67 |
+
def generate_summary(text, length="medium"):
|
68 |
cache_key = hashlib.md5((text + length).encode()).hexdigest()
|
69 |
if cache_key in summary_cache:
|
70 |
return summary_cache[cache_key]
|
71 |
|
72 |
+
params = {"short": (30, 80), "medium": (80, 200), "long": (210, 300)}[length]
|
73 |
+
min_len, max_len = params
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
chunks = chunk_text(text)
|
76 |
+
summaries = summarizer(chunks, max_length=max_len, min_length=min_len, do_sample=False)
|
77 |
+
final_summary = " ".join(s['summary_text'] for s in summaries)
|
78 |
summary_cache[cache_key] = final_summary
|
79 |
return final_summary
|
80 |
|
81 |
+
def text_to_speech(text):
|
82 |
try:
|
83 |
tts = gTTS(text)
|
84 |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
85 |
tts.save(temp_audio.name)
|
86 |
return temp_audio.name
|
87 |
+
except:
|
88 |
return ""
|
89 |
|
90 |
+
def create_pdf(summary, original_filename):
|
91 |
try:
|
92 |
pdf = FPDF()
|
93 |
pdf.add_page()
|
94 |
pdf.set_font("Arial", 'B', 16)
|
95 |
+
pdf.cell(200, 10, "Summary", ln=True, align='C')
|
96 |
pdf.set_font("Arial", size=12)
|
97 |
+
pdf.multi_cell(0, 10, summary)
|
|
|
|
|
|
|
98 |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
99 |
pdf.output(temp_pdf.name)
|
100 |
return temp_pdf.name
|
101 |
+
except:
|
102 |
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|