Summarization / appImage.py
ikraamkb's picture
Update appImage.py
1795a1a verified
raw
history blame
5.88 kB
"""import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
# Initialize FastAPI
app = FastAPI()
# Load models - Using microsoft/git-large-coco
try:
# Load the better model
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
print("Successfully loaded microsoft/git-large-coco model")
USE_GIT = True
except Exception as e:
print(f"Failed to load GIT model: {e}. Falling back to smaller model")
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
USE_GIT = False
def generate_caption(image_path):
"Generate caption using the best available model""
try:
if USE_GIT:
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
outputs = git_model.generate(**inputs, max_length=50)
return processor.batch_decode(outputs, skip_special_tokens=True)[0]
else:
result = captioner(image_path)
return result[0]['generated_text']
except Exception as e:
print(f"Caption generation error: {e}")
return "Could not generate caption"
def process_image(file_path: str):
"Handle image processing for Gradio interface"
if not file_path:
return "Please upload an image first"
try:
caption = generate_caption(file_path)
return f"πŸ“· Image Caption:\n{caption}"
except Exception as e:
return f"Error processing image: {str(e)}"
# Gradio Interface
with gr.Blocks(title="Image Captioning Service", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ–ΌοΈ Image Captioning Service")
gr.Markdown("Upload an image to get automatic captioning")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="filepath")
analyze_btn = gr.Button("Generate Caption", variant="primary")
with gr.Column():
output = gr.Textbox(label="Caption Result", lines=5)
analyze_btn.click(
fn=process_image,
inputs=[image_input],
outputs=[output]
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def redirect_to_interface():
return RedirectResponse(url="/")
"""
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
from PIL import Image
import torch
from fastapi import FastAPI, UploadFile, Form
from fastapi.responses import RedirectResponse, JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
import os
import tempfile
# βœ… Initialize FastAPI
app = FastAPI()
# βœ… Enable CORS (so frontend JS can call backend)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# βœ… Load caption model
USE_GIT = False
try:
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
git_model.eval()
USE_GIT = True
except Exception as e:
print(f"[INFO] Falling back to ViT: {e}")
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
# βœ… Image captioning logic
def generate_caption(image_path: str) -> str:
try:
if USE_GIT:
image = Image.open(image_path).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
outputs = git_model.generate(**inputs, max_length=50)
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
else:
result = captioner(image_path)
caption = result[0]['generated_text']
return caption
except Exception as e:
return f"Error: {str(e)}"
# βœ… For Gradio demo
def process_image(file_path: str):
if not file_path:
return "Please upload an image."
return f"πŸ“· Image Caption:\n{generate_caption(file_path)}"
# βœ… FastAPI endpoint for frontend POSTs
@app.post("/imagecaption/")
async def caption_from_frontend(file: UploadFile, question: str = Form("")):
try:
# Save temp image
contents = await file.read()
tmp_path = os.path.join(tempfile.gettempdir(), file.filename)
with open(tmp_path, "wb") as f:
f.write(contents)
caption = generate_caption(tmp_path)
# Optionally generate audio
from gtts import gTTS
audio_path = os.path.join(tempfile.gettempdir(), file.filename + ".mp3")
tts = gTTS(text=caption)
tts.save(audio_path)
return {
"answer": caption,
"audio": f"/files/{os.path.basename(audio_path)}"
}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
# βœ… Serve static files
@app.get("/files/{file_name}")
async def serve_file(file_name: str):
path = os.path.join(tempfile.gettempdir(), file_name)
if os.path.exists(path):
return FileResponse(path)
return JSONResponse({"error": "File not found"}, status_code=404)
# βœ… Mount Gradio demo for test
with gr.Blocks(title="πŸ–ΌοΈ Image Captioning") as demo:
gr.Markdown("# πŸ–ΌοΈ Image Captioning Demo")
image_input = gr.Image(type="filepath", label="Upload Image")
result_box = gr.Textbox(label="Caption")
btn = gr.Button("Generate Caption")
btn.click(fn=process_image, inputs=[image_input], outputs=[result_box])
app = gr.mount_gradio_app(app, demo, path="/")
# βœ… Optional root redirect to frontend
@app.get("/")
def redirect_to_frontend():
return RedirectResponse(url="/templates/home.html")