Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
import fitz # PyMuPDF | |
import docx | |
import pptx | |
import openpyxl | |
import re | |
import nltk | |
from nltk.tokenize import sent_tokenize | |
import torch | |
from fastapi import FastAPI, UploadFile, Form, File | |
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from gtts import gTTS | |
import tempfile | |
import os | |
import shutil | |
import easyocr | |
from fpdf import FPDF | |
import datetime | |
from concurrent.futures import ThreadPoolExecutor | |
import hashlib | |
nltk.download('punkt', quiet=True) | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
MODEL_NAME = "facebook/bart-large-cnn" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) | |
model.eval() | |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4) | |
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available()) | |
executor = ThreadPoolExecutor() | |
summary_cache = {} | |
def clean_text(text: str) -> str: | |
text = re.sub(r'\s+', ' ', text) | |
text = re.sub(r'\u2022\s*|\d\.\s+', '', text) | |
text = re.sub(r'\[.*?\]|\(.*?\)', '', text) | |
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) | |
return text.strip() | |
def extract_text(file_path: str, file_extension: str): | |
try: | |
if file_extension == "pdf": | |
with fitz.open(file_path) as doc: | |
text = "\n".join(page.get_text("text") for page in doc) | |
if len(text.strip()) < 50: | |
images = [page.get_pixmap() for page in doc] | |
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
images[0].save(temp_img.name) | |
ocr_result = reader.readtext(temp_img.name, detail=0) | |
os.unlink(temp_img.name) | |
text = "\n".join(ocr_result) if ocr_result else text | |
return clean_text(text), "" | |
elif file_extension == "docx": | |
doc = docx.Document(file_path) | |
return clean_text("\n".join(p.text for p in doc.paragraphs)), "" | |
elif file_extension == "pptx": | |
prs = pptx.Presentation(file_path) | |
text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")] | |
return clean_text("\n".join(text)), "" | |
elif file_extension == "xlsx": | |
wb = openpyxl.load_workbook(file_path, read_only=True) | |
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)] | |
return clean_text("\n".join(text)), "" | |
elif file_extension in ["jpg", "jpeg", "png"]: | |
ocr_result = reader.readtext(file_path, detail=0) | |
return clean_text("\n".join(ocr_result)), "" | |
return "", "Unsupported file format" | |
except Exception as e: | |
return "", f"Error reading {file_extension.upper()} file: {str(e)}" | |
def chunk_text(text: str, max_tokens: int = 950): | |
try: | |
sentences = sent_tokenize(text) | |
except: | |
words = text.split() | |
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)] | |
chunks = [] | |
current_chunk = "" | |
for sentence in sentences: | |
token_length = len(tokenizer.encode(current_chunk + " " + sentence)) | |
if token_length <= max_tokens: | |
current_chunk += " " + sentence | |
else: | |
chunks.append(current_chunk.strip()) | |
current_chunk = sentence | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return chunks | |
def generate_summary(text: str, length: str = "medium") -> str: | |
cache_key = hashlib.md5((text + length).encode()).hexdigest() | |
if cache_key in summary_cache: | |
return summary_cache[cache_key] | |
length_params = { | |
"short": {"max_length": 80, "min_length": 30}, | |
"medium": {"max_length": 200, "min_length": 80}, | |
"long": {"max_length": 300, "min_length": 210} | |
} | |
chunks = chunk_text(text) | |
try: | |
summaries = summarizer( | |
chunks, | |
max_length=length_params[length]["max_length"], | |
min_length=length_params[length]["min_length"], | |
do_sample=False, | |
truncation=True, | |
no_repeat_ngram_size=2, | |
num_beams=2, | |
early_stopping=True | |
) | |
summary_texts = [s['summary_text'] for s in summaries] | |
except Exception as e: | |
summary_texts = [f"[Batch error: {str(e)}]"] | |
final_summary = " ".join(summary_texts) | |
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip()) | |
final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief" | |
summary_cache[cache_key] = final_summary | |
return final_summary | |
def text_to_speech(text: str): | |
try: | |
tts = gTTS(text) | |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") | |
tts.save(temp_audio.name) | |
return temp_audio.name | |
except Exception as e: | |
print(f"Error in text-to-speech: {e}") | |
return "" | |
def create_pdf(summary: str, original_filename: str): | |
try: | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", size=12) | |
pdf.set_font("Arial", 'B', 16) | |
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C') | |
pdf.set_font("Arial", size=12) | |
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1) | |
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1) | |
pdf.ln(10) | |
pdf.multi_cell(0, 10, txt=summary) | |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") | |
pdf.output(temp_pdf.name) | |
return temp_pdf.name | |
except Exception as e: | |
print(f"Error creating PDF: {e}") | |
return "" | |
async def summarize_api(file: UploadFile = File(...), length: str = Form("medium")): | |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp: | |
shutil.copyfileobj(file.file, temp) | |
temp.flush() | |
class FileObj: name = temp.name | |
summary, _, audio_path, pdf_path = summarize_document(FileObj, length) | |
return { | |
"summary": summary, | |
"audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None, | |
"pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None | |
} | |
async def get_file(file_name: str): | |
file_path = os.path.join(tempfile.gettempdir(), file_name) | |
if os.path.exists(file_path): | |
return FileResponse(file_path) | |
return JSONResponse({"error": "File not found"}, status_code=404) | |
def redirect_to_interface(): | |
return RedirectResponse(url="/") | |