Spaces:
Sleeping
Sleeping
import streamlit as st | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import torch | |
from transformers import AutoConfig | |
# Page configuration | |
st.set_page_config( | |
page_title="Transformer Visualizer", | |
page_icon="🧠", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Custom CSS styling | |
st.markdown(""" | |
<style> | |
.reportview-container { | |
background: linear-gradient(45deg, #1a1a1a, #4a4a4a); | |
} | |
.sidebar .sidebar-content { | |
background: #2c2c2c !important; | |
} | |
h1, h2, h3, h4, h5, h6 { | |
color: #00ff00 !important; | |
} | |
.stMetric { | |
background-color: #333333; | |
border-radius: 10px; | |
padding: 15px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Model database | |
MODELS = { | |
"BERT": {"model_name": "bert-base-uncased", "type": "Encoder", "layers": 12, "heads": 12, "params": 109.48}, | |
"GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12, "params": 117}, | |
"T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8, "params": 60}, | |
"RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 125}, | |
"DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6, "heads": 12, "params": 66}, | |
"ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12, "params": 11.8}, | |
"ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder", "layers": 12, "heads": 12, "params": 13.5}, | |
"XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12, "heads": 12, "params": 110}, | |
"BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16, "params": 139}, | |
"DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 139} | |
} | |
def get_model_config(model_name): | |
config = AutoConfig.from_pretrained(MODELS[model_name]["model_name"]) | |
return config | |
def plot_model_comparison(selected_model): | |
model_names = list(MODELS.keys()) | |
params = [m["params"] for m in MODELS.values()] | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
bars = ax.bar(model_names, params) | |
# Highlight selected model | |
index = list(MODELS.keys()).index(selected_model) | |
bars[index].set_color('#00ff00') | |
ax.set_ylabel('Parameters (Millions)', color='white') | |
ax.set_title('Model Size Comparison', color='white') | |
ax.tick_params(axis='x', rotation=45, colors='white') | |
ax.tick_params(axis='y', colors='white') | |
ax.set_facecolor('#2c2c2c') | |
fig.patch.set_facecolor('#2c2c2c') | |
st.pyplot(fig) | |
def visualize_attention_patterns(): | |
# Simplified attention patterns visualization | |
fig, ax = plt.subplots(figsize=(8, 6)) | |
data = torch.randn(5, 5) | |
ax.imshow(data, cmap='viridis') | |
ax.set_title('Attention Patterns Example', color='white') | |
ax.set_facecolor('#2c2c2c') | |
fig.patch.set_facecolor('#2c2c2c') | |
st.pyplot(fig) | |
def main(): | |
st.title("🧠 Transformer Model Visualizer") | |
# Model selection | |
selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys())) | |
# Model details | |
model_info = MODELS[selected_model] | |
config = get_model_config(selected_model) | |
# Display metrics | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric("Model Type", model_info["type"]) | |
with col2: | |
st.metric("Layers", model_info["layers"]) | |
with col3: | |
st.metric("Attention Heads", model_info["heads"]) | |
with col4: | |
st.metric("Parameters", f"{model_info['params']}M") | |
# Visualization tabs | |
tab1, tab2, tab3 = st.tabs(["Model Structure", "Comparison", "Model Specific"]) | |
with tab1: | |
st.subheader("Architecture Diagram") | |
st.image("https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Transformer_model.svg/1200px-Transformer_model.svg.png", | |
use_container_width=True) # Changed parameter here | |
with tab2: | |
st.subheader("Model Size Comparison") | |
plot_model_comparison(selected_model) | |
with tab3: | |
st.subheader("Model-specific Visualizations") | |
visualize_attention_patterns() | |
if selected_model == "BERT": | |
st.write("BERT-specific visualization example") | |
elif selected_model == "GPT-2": | |
st.write("GPT-2 attention mask visualization") | |
if __name__ == "__main__": | |
main() |