File size: 6,943 Bytes
c443e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6906b73
 
 
 
 
 
 
 
 
c443e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6906b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c443e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6906b73
c443e62
 
 
6906b73
 
 
 
 
 
 
 
 
 
c443e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
import torch
from transformers import AutoConfig

# Page configuration
st.set_page_config(
    page_title="Transformer Visualizer",
    page_icon="🧠",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS styling
st.markdown("""
<style>
    .reportview-container {
        background: linear-gradient(45deg, #1a1a1a, #4a4a4a);
    }
    .sidebar .sidebar-content {
        background: #2c2c2c !important;
    }
    h1, h2, h3, h4, h5, h6 {
        color: #00ff00 !important;
    }
    .stMetric {
        background-color: #333333;
        border-radius: 10px;
        padding: 15px;
    }
    .architecture {
        font-family: monospace;
        color: #00ff00;
        white-space: pre-wrap;
        background-color: #1a1a1a;
        padding: 20px;
        border-radius: 10px;
        border: 1px solid #00ff00;
    }
</style>
""", unsafe_allow_html=True)

# Model database
MODELS = {
    "BERT": {"model_name": "bert-base-uncased", "type": "Encoder", "layers": 12, "heads": 12, "params": 109.48},
    "GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12, "params": 117},
    "T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8, "params": 60},
    "RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 125},
    "DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6, "heads": 12, "params": 66},
    "ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12, "params": 11.8},
    "ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder", "layers": 12, "heads": 12, "params": 13.5},
    "XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12, "heads": 12, "params": 110},
    "BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16, "params": 139},
    "DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 139}
}

def get_model_config(model_name):
    config = AutoConfig.from_pretrained(MODELS[model_name]["model_name"])
    return config

def plot_model_comparison(selected_model):
    model_names = list(MODELS.keys())
    params = [m["params"] for m in MODELS.values()]
    
    fig, ax = plt.subplots(figsize=(10, 6))
    bars = ax.bar(model_names, params)
    
    index = list(MODELS.keys()).index(selected_model)
    bars[index].set_color('#00ff00')
    
    ax.set_ylabel('Parameters (Millions)', color='white')
    ax.set_title('Model Size Comparison', color='white')
    ax.tick_params(axis='x', rotation=45, colors='white')
    ax.tick_params(axis='y', colors='white')
    ax.set_facecolor('#2c2c2c')
    fig.patch.set_facecolor('#2c2c2c')
    
    st.pyplot(fig)

def visualize_architecture(model_info):
    architecture = []
    model_type = model_info["type"]
    layers = model_info["layers"]
    heads = model_info["heads"]
    
    architecture.append("Input")
    architecture.append("β”‚")
    architecture.append("β–Ό")
    
    if model_type == "Encoder":
        architecture.append("[Embedding Layer]")
        for i in range(layers):
            architecture.extend([
                f"Encoder Layer {i+1}",
                "β”œβ”€ Multi-Head Attention",
                f"β”‚  └─ {heads} Heads",
                "β”œβ”€ Layer Normalization",
                "└─ Feed Forward Network",
                "β”‚",
                "β–Ό"
            ])
        architecture.append("[Output]")
    
    elif model_type == "Decoder":
        architecture.append("[Embedding Layer]")
        for i in range(layers):
            architecture.extend([
                f"Decoder Layer {i+1}",
                "β”œβ”€ Masked Multi-Head Attention",
                f"β”‚  └─ {heads} Heads",
                "β”œβ”€ Layer Normalization",
                "└─ Feed Forward Network",
                "β”‚",
                "β–Ό"
            ])
        architecture.append("[Output]")
    
    elif model_type == "Seq2Seq":
        architecture.append("Encoder Stack")
        for i in range(layers):
            architecture.extend([
                f"Encoder Layer {i+1}",
                "β”œβ”€ Self-Attention",
                "└─ Feed Forward Network",
                "β”‚",
                "β–Ό"
            ])
        architecture.append("β†’β†’β†’ [Context] β†’β†’β†’")
        architecture.append("Decoder Stack")
        for i in range(layers):
            architecture.extend([
                f"Decoder Layer {i+1}",
                "β”œβ”€ Masked Self-Attention",
                "β”œβ”€ Encoder-Decoder Attention",
                "└─ Feed Forward Network",
                "β”‚",
                "β–Ό"
            ])
        architecture.append("[Output]")
    
    return "\n".join(architecture)

def visualize_attention_patterns():
    fig, ax = plt.subplots(figsize=(8, 6))
    data = torch.randn(5, 5)
    ax.imshow(data, cmap='viridis')
    ax.set_title('Attention Patterns Example', color='white')
    ax.set_facecolor('#2c2c2c')
    fig.patch.set_facecolor('#2c2c2c')
    st.pyplot(fig)

def main():
    st.title("🧠 Transformer Model Visualizer")
    
    selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys()))
    model_info = MODELS[selected_model]
    config = get_model_config(selected_model)
    
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.metric("Model Type", model_info["type"])
    with col2:
        st.metric("Layers", model_info["layers"])
    with col3:
        st.metric("Attention Heads", model_info["heads"])
    with col4:
        st.metric("Parameters", f"{model_info['params']}M")
    
    tab1, tab2, tab3 = st.tabs(["Model Structure", "Comparison", "Model Attention"])
    
    with tab1:
        st.subheader("Architecture Diagram")
        architecture = visualize_architecture(model_info)
        st.markdown(f"<div class='architecture'>{architecture}</div>", unsafe_allow_html=True)
        
        st.markdown("""
        **Legend:**
        - **Multi-Head Attention**: Self-attention mechanism with multiple parallel heads
        - **Layer Normalization**: Normalization operation between layers
        - **Feed Forward Network**: Position-wise fully connected network
        - **Masked Attention**: Attention with future token masking
        """)
    
    with tab2:
        st.subheader("Model Size Comparison")
        plot_model_comparison(selected_model)
    
    with tab3:
        st.subheader("Model-specific Visualizations")
        visualize_attention_patterns()
        if selected_model == "BERT":
            st.write("BERT-specific visualization example")
        elif selected_model == "GPT-2":
            st.write("GPT-2 attention mask visualization")

if __name__ == "__main__":
    main()