iisadia's picture
Update app.py
bf9eab2 verified
import streamlit as st
import requests
from fpdf import FPDF
import os
import time
from datetime import datetime
import groq
# API keys (replace with your keys or use environment variables)
mistral_api_key = os.getenv("MISTRAL_API_KEY", "gz6lDXokxgR6cLY72oomALWcm7vhjRzQ")
groq_api_key = os.getenv("GROQ_API_KEY", "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")
# Initialize Groq client
groq_client = groq.Client(api_key=groq_api_key)
# Function to call Mistral API
def call_mistral_api(prompt):
url = "https://api.mistral.ai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {mistral_api_key}",
"Content-Type": "application/json"
}
payload = {
"model": "mistral-medium",
"messages": [
{"role": "user", "content": prompt}
]
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status() # Raise an error for bad status codes
return response.json()['choices'][0]['message']['content']
except requests.exceptions.HTTPError as err:
if response.status_code == 429: # Rate limit exceeded
st.warning("Rate limit exceeded. Please wait a few seconds and try again.")
time.sleep(5) # Wait for 5 seconds before retrying
return call_mistral_api(prompt) # Retry the request
return f"HTTP Error: {err}"
except Exception as err:
return f"Error: {err}"
# Function to call Groq API
def call_groq_api(prompt):
try:
response = groq_client.chat.completions.create(
model="llama-3.3-70b-versatile", # Correct model name
messages=[
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
except Exception as err:
st.error(f"Error: {err}")
return f"Error: {err}"
# Function to analyze a single requirement using both models
def analyze_requirement(requirement):
# Use Mistral for classification and domain identification
type_prompt = f"Classify the following requirement as Functional or Non-Functional in one word:\n\n{requirement}\n\nType:"
req_type = call_mistral_api(type_prompt).strip()
domain_prompt = f"Classify the domain for the following requirement in one word (e.g., E-commerce, Education, etc.):\n\n{requirement}\n\nDomain:"
domain = call_mistral_api(domain_prompt).strip()
# Use Groq for defect analysis and rewriting
defects_prompt = f"""List ONLY the major defects in the following requirement (e.g., Ambiguity, Incompleteness, etc.) in 1-2 words each:\n\n{requirement}\n\nDefects:"""
defects = call_groq_api(defects_prompt).strip()
rewritten_prompt = f"""Rewrite the following requirement in 1-2 sentences to address the defects:\n\n{requirement}\n\nRewritten:"""
rewritten = call_groq_api(rewritten_prompt).strip()
return {
"Requirement": requirement,
"Type": req_type,
"Domain": domain,
"Defects": defects,
"Rewritten": rewritten
}
# Function to generate a PDF report
def generate_pdf_report(results):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
# Add watermark
pdf.set_font("Arial", 'B', 50)
pdf.set_text_color(230, 230, 230) # Light gray color for watermark
pdf.rotate(45) # Rotate the text for watermark effect
pdf.text(60, 150, "MSSE31 Student's Project")
pdf.rotate(0) # Reset rotation
# Add title and date/time
pdf.set_font("Arial", 'B', 16)
pdf.set_text_color(0, 0, 0) # Black color for title
pdf.cell(200, 10, txt="AI-Based Requirement Defect Detection Using Large Language Models (LLMs)s", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10) # Add some space
# Add requirements analysis
pdf.set_font("Arial", size=12)
for i, result in enumerate(results, start=1):
if pdf.get_y() > 250: # If the content is near the bottom of the page
pdf.add_page() # Add a new page
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10) # Add some space
# Add requirement details
pdf.set_font("Arial", 'B', 14)
pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L')
pdf.set_font("Arial", size=12)
pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L')
pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L')
pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L')
pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L')
pdf.multi_cell(200, 10, txt="-" * 50, align='L')
pdf.ln(5) # Add some space between requirements
pdf_output = "requirements_report.pdf"
pdf.output(pdf_output)
return pdf_output
# Streamlit app
def main():
st.title("AI-Based Requirement Defect Detection Using Large Language Models (LLMs)")
st.markdown("**Team Name:** Sadia, Areeba, Rabbia, Tesmia")
st.markdown("**Models:** Mistral (Classification & Domain) + Groq (Defects & Rewriting)")
# Input requirements manually
input_text = st.text_area("Enter your requirements (one per line or separated by periods):")
requirements = []
if input_text:
requirements = [req.strip() for req in input_text.replace("\n", ".").split(".") if req.strip()]
# Analyze requirements
if st.button("Analyze Requirements"):
if not requirements:
st.warning("Please enter requirements.")
else:
results = []
for req in requirements:
if req.strip(): # Ignore empty lines
results.append(analyze_requirement(req.strip()))
# Display results
st.subheader("Analysis Results")
for i, result in enumerate(results, start=1):
st.write(f"### Requirement R{i}: {result['Requirement']}")
st.write(f"**Type:** {result['Type']}")
st.write(f"**Domain:** {result['Domain']}")
st.write(f"**Defects:** {result['Defects']}")
st.write(f"**Rewritten:** {result['Rewritten']}")
st.write("---")
# Generate and download PDF report
pdf_report = generate_pdf_report(results)
with open(pdf_report, "rb") as f:
st.download_button(
label="Download PDF Report",
data=f,
file_name="requirements_report.pdf",
mime="application/pdf"
)
# Run the app
if __name__ == "__main__":
main()