Spaces:
Running
Running
add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import gradio.components as grc
|
3 |
+
# from wmdetection.models import get_watermarks_detection_model
|
4 |
+
# from wmdetection.pipelines.predictor import WatermarksPredictor
|
5 |
+
import os, glob
|
6 |
+
import spaces
|
7 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
8 |
+
import torch
|
9 |
+
model_name = 'https://huggingface.co/hyunseoki/ReMoDetect-deberta'
|
10 |
+
|
11 |
+
THESHOLD=4.0
|
12 |
+
predictor = AutoModelForSequenceClassification.from_pretrained(model_name)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
|
15 |
+
@spaces.GPU
|
16 |
+
def predict(text):
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
predictor.to(device)
|
19 |
+
tokenized = tokenizer(text, return_tensors='pt', truncation=True, max_length=512).to(device)
|
20 |
+
result = predictor(**tokenized).logits[0].cpu().detach().item()
|
21 |
+
AI_score = round(torch.sigmoid(torch.tensor(result-THESHOLD)*2).item(),2)
|
22 |
+
return f'{AI_score*100} %', f'{round(result,2)}'
|
23 |
+
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=predict,
|
26 |
+
title="ReMoDetect: Reward Model for LLM Generated Text Detection",
|
27 |
+
description="The continuously finetuned reward model so that can classify LLM generated text from human writen text.",
|
28 |
+
inputs=grc.Textbox(label='INPUT', placeholder="Type here..."),
|
29 |
+
# examples=examples,
|
30 |
+
outputs=[grc.Textbox(label="AI likelihood"), grc.Textbox(label="Raw score")],
|
31 |
+
)
|
32 |
+
iface.launch(share=True)
|