hyunseoki commited on
Commit
604d33c
·
1 Parent(s): ace735f

add app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import gradio.components as grc
3
+ # from wmdetection.models import get_watermarks_detection_model
4
+ # from wmdetection.pipelines.predictor import WatermarksPredictor
5
+ import os, glob
6
+ import spaces
7
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
8
+ import torch
9
+ model_name = 'https://huggingface.co/hyunseoki/ReMoDetect-deberta'
10
+
11
+ THESHOLD=4.0
12
+ predictor = AutoModelForSequenceClassification.from_pretrained(model_name)
13
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
14
+
15
+ @spaces.GPU
16
+ def predict(text):
17
+ device = "cuda" if torch.cuda.is_available() else "cpu"
18
+ predictor.to(device)
19
+ tokenized = tokenizer(text, return_tensors='pt', truncation=True, max_length=512).to(device)
20
+ result = predictor(**tokenized).logits[0].cpu().detach().item()
21
+ AI_score = round(torch.sigmoid(torch.tensor(result-THESHOLD)*2).item(),2)
22
+ return f'{AI_score*100} %', f'{round(result,2)}'
23
+
24
+ iface = gr.Interface(
25
+ fn=predict,
26
+ title="ReMoDetect: Reward Model for LLM Generated Text Detection",
27
+ description="The continuously finetuned reward model so that can classify LLM generated text from human writen text.",
28
+ inputs=grc.Textbox(label='INPUT', placeholder="Type here..."),
29
+ # examples=examples,
30
+ outputs=[grc.Textbox(label="AI likelihood"), grc.Textbox(label="Raw score")],
31
+ )
32
+ iface.launch(share=True)