Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
5 |
import gradio as gr
|
6 |
import torch.nn.utils.prune as prune
|
|
|
7 |
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
@@ -39,6 +40,23 @@ def preprocess_image(image):
|
|
39 |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device)
|
40 |
return image / 255.0
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
@torch.inference_mode()
|
43 |
def process_frame(image):
|
44 |
if image is None:
|
@@ -46,10 +64,28 @@ def process_frame(image):
|
|
46 |
preprocessed = preprocess_image(image)
|
47 |
predicted_depth = model(preprocessed).predicted_depth
|
48 |
depth_map = predicted_depth.squeeze().cpu().numpy()
|
|
|
|
|
49 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
interface = gr.Interface(
|
55 |
fn=process_frame,
|
|
|
4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
5 |
import gradio as gr
|
6 |
import torch.nn.utils.prune as prune
|
7 |
+
import open3d as o3d
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
|
|
40 |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device)
|
41 |
return image / 255.0
|
42 |
|
43 |
+
def create_point_cloud(depth_map, color_image):
|
44 |
+
rows, cols = depth_map.shape
|
45 |
+
c, r = np.meshgrid(np.arange(cols), np.arange(rows), sparse=True)
|
46 |
+
valid = (depth_map > 0) & (depth_map < 1000)
|
47 |
+
z = np.where(valid, depth_map, 0)
|
48 |
+
x = np.where(valid, z * (c - cols / 2) / cols, 0)
|
49 |
+
y = np.where(valid, z * (r - rows / 2) / rows, 0)
|
50 |
+
|
51 |
+
points = np.dstack((x, y, z)).reshape(-1, 3)
|
52 |
+
colors = color_image.reshape(-1, 3)
|
53 |
+
|
54 |
+
pcd = o3d.geometry.PointCloud()
|
55 |
+
pcd.points = o3d.utility.Vector3dVector(points)
|
56 |
+
pcd.colors = o3d.utility.Vector3dVector(colors / 255.0)
|
57 |
+
|
58 |
+
return pcd
|
59 |
+
|
60 |
@torch.inference_mode()
|
61 |
def process_frame(image):
|
62 |
if image is None:
|
|
|
64 |
preprocessed = preprocess_image(image)
|
65 |
predicted_depth = model(preprocessed).predicted_depth
|
66 |
depth_map = predicted_depth.squeeze().cpu().numpy()
|
67 |
+
|
68 |
+
# Normalize depth map
|
69 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
70 |
+
|
71 |
+
# Create point cloud
|
72 |
+
pcd = create_point_cloud(depth_map, image)
|
73 |
+
|
74 |
+
# Visualize point cloud
|
75 |
+
vis = o3d.visualization.Visualizer()
|
76 |
+
vis.create_window()
|
77 |
+
vis.add_geometry(pcd)
|
78 |
+
vis.poll_events()
|
79 |
+
vis.update_renderer()
|
80 |
+
|
81 |
+
# Capture the visualization as an image
|
82 |
+
image = vis.capture_screen_float_buffer(False)
|
83 |
+
vis.destroy_window()
|
84 |
+
|
85 |
+
# Convert the image to numpy array
|
86 |
+
point_cloud_image = (np.asarray(image) * 255).astype(np.uint8)
|
87 |
+
|
88 |
+
return point_cloud_image
|
89 |
|
90 |
interface = gr.Interface(
|
91 |
fn=process_frame,
|