Jie Hu
init project
5412668
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Base class for the global alignement procedure
# --------------------------------------------------------
from copy import deepcopy
import numpy as np
import torch
import torch.nn as nn
import roma
from copy import deepcopy
import tqdm
from torch.nn.functional import cosine_similarity
import cv2
from dust3r.utils.geometry import inv, geotrf
from dust3r.utils.device import to_numpy
from dust3r.utils.image import rgb
from dust3r.viz import SceneViz, segment_sky, auto_cam_size
from dust3r.optim_factory import adjust_learning_rate_by_lr
from dust3r.cloud_opt.commons import (edge_str, ALL_DISTS, NoGradParamDict, get_imshapes, signed_expm1, signed_log1p,
cosine_schedule, linear_schedule, get_conf_trf, GradParamDict)
import dust3r.cloud_opt.init_im_poses as init_fun
class BasePCOptimizer (nn.Module):
""" Optimize a global scene, given a list of pairwise observations.
Graph node: images
Graph edges: observations = (pred1, pred2)
"""
def __init__(self, *args, **kwargs):
if len(args) == 1 and len(kwargs) == 0:
other = deepcopy(args[0])
attrs = '''edges is_symmetrized dist n_imgs pred_i pred_j imshapes
min_conf_thr conf_thr conf_i conf_j im_conf
base_scale norm_pw_scale POSE_DIM pw_poses
pw_adaptors pw_adaptors has_im_poses rand_pose imgs verbose'''.split()
self.__dict__.update({k: other[k] for k in attrs})
else:
self._init_from_views(*args, **kwargs)
def _init_from_views(self, view1, view2, pred1, pred2, cog_seg_maps, rev_cog_seg_maps, semantic_feats, device,
dist='l2',
conf='log',
min_conf_thr=3,
base_scale=0.5,
allow_pw_adaptors=False,
pw_break=20,
rand_pose=torch.randn,
iterationsCount=None,
verbose=True):
super().__init__()
if not isinstance(view1['idx'], list):
view1['idx'] = view1['idx'].tolist()
if not isinstance(view2['idx'], list):
view2['idx'] = view2['idx'].tolist()
self.edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])]
self.is_symmetrized = set(self.edges) == {(j, i) for i, j in self.edges}
self.dist = ALL_DISTS[dist]
self.verbose = verbose
self.n_imgs = self._check_edges()
# input data
pred1_pts = pred1['pts3d']
pred2_pts = pred2['pts3d_in_other_view']
self.pred_i = NoGradParamDict({ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)})
self.pred_j = NoGradParamDict({ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)})
# self.ori_pred_i = NoGradParamDict({ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)})
# self.ori_pred_j = NoGradParamDict({ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)})
self.imshapes = get_imshapes(self.edges, pred1_pts, pred2_pts)
# work in log-scale with conf
pred1_conf = pred1['conf']
pred2_conf = pred2['conf']
self.min_conf_thr = min_conf_thr
self.conf_trf = get_conf_trf(conf)
self.conf_i = NoGradParamDict({ij: pred1_conf[e] for e, ij in enumerate(self.str_edges)})
self.conf_j = NoGradParamDict({ij: pred2_conf[e] for e, ij in enumerate(self.str_edges)})
self.im_conf = self._compute_img_conf(pred1_conf, pred2_conf)
for i in range(len(self.im_conf)):
self.im_conf[i].requires_grad = False
# pairwise pose parameters
self.base_scale = base_scale
self.norm_pw_scale = True
self.pw_break = pw_break
self.POSE_DIM = 7
self.pw_poses = nn.Parameter(rand_pose((self.n_edges, 1+self.POSE_DIM))) # pairwise poses
self.pw_poses.requires_grad_(True)
self.pw_adaptors = nn.Parameter(torch.zeros((self.n_edges, 2))) # slight xy/z adaptation
self.pw_adaptors.requires_grad_(True)
self.has_im_poses = False
self.rand_pose = rand_pose
# possibly store images for show_pointcloud
self.imgs = None
if 'img' in view1 and 'img' in view2:
imgs = [torch.zeros((3,)+hw) for hw in self.imshapes]
smoothed_imgs = [torch.zeros((3,)+hw) for hw in self.imshapes]
ori_imgs = [torch.zeros((3,)+hw) for hw in self.imshapes]
for v in range(len(self.edges)):
idx = view1['idx'][v]
imgs[idx] = view1['img'][v]
smoothed_imgs[idx] = view1['smoothed_img'][v]
ori_imgs[idx] = view1['ori_img'][v]
idx = view2['idx'][v]
imgs[idx] = view2['img'][v]
smoothed_imgs[idx] = view2['smoothed_img'][v]
ori_imgs[idx] = view2['ori_img'][v]
self.imgs = rgb(imgs)
self.ori_imgs = rgb(ori_imgs)
self.fix_imgs = rgb(ori_imgs)
self.smoothed_imgs = rgb(smoothed_imgs)
self.cogs = [torch.zeros((h, w, 1024), device=device) for h, w in self.imshapes]
semantic_feats = semantic_feats.to(device)
self.segmaps = [-torch.ones((h, w), device=device) for h, w in self.imshapes]
self.rev_segmaps = [-torch.ones((h, w), device=device) for h, w in self.imshapes]
for v in range(len(self.edges)):
idx = view1['idx'][v]
h, w = self.cogs[idx].shape[0], self.cogs[idx].shape[1]
cog_seg_map = cog_seg_maps[idx]
cog_seg_map = torch.from_numpy(cv2.resize(cog_seg_map, [w, h], interpolation=cv2.INTER_NEAREST))
rev_seg_map = rev_cog_seg_maps[idx]
rev_seg_map = torch.from_numpy(cv2.resize(rev_seg_map, [w, h], interpolation=cv2.INTER_NEAREST))
y, x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w))
x = x.reshape(-1, 1)
y = y.reshape(-1, 1)
seg = cog_seg_map[y, x].squeeze(-1).long()
self.cogs[idx] = semantic_feats[seg].reshape(h, w, -1)
self.segmaps[idx] = cog_seg_map.to(device)
self.rev_segmaps[idx] = rev_seg_map.to(device)
idx = view2['idx'][v]
h, w = self.cogs[idx].shape[0], self.cogs[idx].shape[1]
cog_seg_map = cog_seg_maps[idx]
cog_seg_map = torch.from_numpy(cv2.resize(cog_seg_map, [w, h], interpolation=cv2.INTER_NEAREST))
rev_seg_map = rev_cog_seg_maps[idx]
rev_seg_map = torch.from_numpy(cv2.resize(rev_seg_map, [w, h], interpolation=cv2.INTER_NEAREST))
y, x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w))
x = x.reshape(-1, 1)
y = y.reshape(-1, 1)
seg = cog_seg_map[y, x].squeeze(-1).long()
self.cogs[idx] = semantic_feats[seg].reshape(h, w, -1)
self.segmaps[idx] = cog_seg_map.to(device)
self.rev_segmaps[idx] = rev_seg_map.to(device)
self.rendered_imgs = []
def render_image(self, text_feats, threshold=0.85):
self.rendered_imgs = []
# Collect all cosine similarities to compute min-max normalization
all_similarities = []
for each_cog in self.cogs:
similarity_map = cosine_similarity(each_cog.to("cpu"), text_feats.to("cpu").unsqueeze(1), dim=-1)
all_similarities.append(similarity_map.squeeze().numpy())
# Flatten and normalize all similarities
total_similarities = np.concatenate(all_similarities)
min_sim, max_sim = total_similarities.min(), total_similarities.max()
normalized_similarities = [(sim - min_sim) / (max_sim - min_sim) for sim in all_similarities]
#
# normalized_similarities = [(sim - sim.min()) / (sim.max() - sim.min()) for sim in all_similarities]
# Process each image with normalized similarities
for i, (each_cog, heatmap) in enumerate(zip(self.cogs, normalized_similarities)):
mask = heatmap > threshold
# Scale heatmap for visualization
heatmap = np.uint8(255 * heatmap)
heatmap_color = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
# Prepare image
image = self.fix_imgs[i]
image = image * 255.0
image = np.clip(image, 0, 255).astype(np.uint8)
# Apply mask and overlay heatmap with red RGB for masked areas
mask_indices = np.where(mask) # Get indices where mask is True
heatmap_color[mask_indices[0], mask_indices[1]] = [0, 0, 255] # Red color for masked regions
superimposed_img = np.where(np.expand_dims(mask, axis=-1), heatmap_color, image) / 255.0
self.rendered_imgs.append(superimposed_img)
@property
def n_edges(self):
return len(self.edges)
@property
def str_edges(self):
return [edge_str(i, j) for i, j in self.edges]
@property
def imsizes(self):
return [(w, h) for h, w in self.imshapes]
@property
def device(self):
return next(iter(self.parameters())).device
def state_dict(self, trainable=True):
all_params = super().state_dict()
return {k: v for k, v in all_params.items() if k.startswith(('_', 'pred_i.', 'pred_j.', 'conf_i.', 'conf_j.')) != trainable}
def load_state_dict(self, data):
return super().load_state_dict(self.state_dict(trainable=False) | data)
def _check_edges(self):
indices = sorted({i for edge in self.edges for i in edge})
assert indices == list(range(len(indices))), 'bad pair indices: missing values '
return len(indices)
@torch.no_grad()
def _compute_img_conf(self, pred1_conf, pred2_conf):
im_conf = nn.ParameterList([torch.zeros(hw, device=self.device) for hw in self.imshapes])
for e, (i, j) in enumerate(self.edges):
im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e])
im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e])
return im_conf
def get_adaptors(self):
adapt = self.pw_adaptors
adapt = torch.cat((adapt[:, 0:1], adapt), dim=-1) # (scale_xy, scale_xy, scale_z)
if self.norm_pw_scale: # normalize so that the product == 1
adapt = adapt - adapt.mean(dim=1, keepdim=True)
return (adapt / self.pw_break).exp()
def _get_poses(self, poses):
# normalize rotation
Q = poses[:, :4]
T = signed_expm1(poses[:, 4:7])
RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous()
return RT
def _set_pose(self, poses, idx, R, T=None, scale=None, force=False):
# all poses == cam-to-world
pose = poses[idx]
if not (pose.requires_grad or force):
return pose
if R.shape == (4, 4):
assert T is None
T = R[:3, 3]
R = R[:3, :3]
if R is not None:
pose.data[0:4] = roma.rotmat_to_unitquat(R)
if T is not None:
pose.data[4:7] = signed_log1p(T / (scale or 1)) # translation is function of scale
if scale is not None:
assert poses.shape[-1] in (8, 13)
pose.data[-1] = np.log(float(scale))
return pose
def get_pw_norm_scale_factor(self):
if self.norm_pw_scale:
# normalize scales so that things cannot go south
# we want that exp(scale) ~= self.base_scale
return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp()
else:
return 1 # don't norm scale for known poses
def get_pw_scale(self):
scale = self.pw_poses[:, -1].exp() # (n_edges,)
scale = scale * self.get_pw_norm_scale_factor()
return scale
def get_pw_poses(self): # cam to world
RT = self._get_poses(self.pw_poses)
scaled_RT = RT.clone()
scaled_RT[:, :3] *= self.get_pw_scale().view(-1, 1, 1) # scale the rotation AND translation
return scaled_RT
def get_masks(self):
return [(conf > self.min_conf_thr) for conf in self.im_conf]
def depth_to_pts3d(self):
raise NotImplementedError()
def get_pts3d(self, raw=False):
res = self.depth_to_pts3d()
if not raw:
res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
return res
def _set_focal(self, idx, focal, force=False):
raise NotImplementedError()
def get_focals(self):
raise NotImplementedError()
def get_known_focal_mask(self):
raise NotImplementedError()
def get_principal_points(self):
raise NotImplementedError()
def get_conf(self, mode=None):
trf = self.conf_trf if mode is None else get_conf_trf(mode)
return [trf(c) for c in self.im_conf]
def get_im_poses(self):
raise NotImplementedError()
def _set_depthmap(self, idx, depth, force=False):
raise NotImplementedError()
def get_depthmaps(self, raw=False):
raise NotImplementedError()
def clean_pointcloud(self, **kw):
cams = inv(self.get_im_poses())
K = self.get_intrinsics()
depthmaps = self.get_depthmaps()
all_pts3d = self.get_pts3d()
new_im_confs = clean_pointcloud(self.im_conf, K, cams, depthmaps, all_pts3d, **kw)
for i, new_conf in enumerate(new_im_confs):
self.im_conf[i].data[:] = new_conf
return self
def forward(self, ret_details=False):
pw_poses = self.get_pw_poses() # cam-to-world
pw_adapt = self.get_adaptors()
proj_pts3d = self.get_pts3d()
# pre-compute pixel weights
weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()}
weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()}
loss = 0
if ret_details:
details = -torch.ones((self.n_imgs, self.n_imgs))
for e, (i, j) in enumerate(self.edges):
i_j = edge_str(i, j)
# distance in image i and j
aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j])
aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j])
li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean()
lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean()
loss = loss + li + lj
if ret_details:
details[i, j] = li + lj
loss /= self.n_edges # average over all pairs
if ret_details:
return loss, details
return loss
def spatial_select_points(self, point_maps, semantic_maps, confidence_maps):
H, W = semantic_maps.shape
# 将点图和语义图调整为二维形式
point_map = point_maps.view(-1, 3) # (H*W, 3)
semantic_map = semantic_maps.view(-1) # (H*W)
confidence_map = confidence_maps.view(-1)
dist_map = torch.zeros_like(semantic_map, dtype=torch.float32)
cnt_map = torch.zeros_like(semantic_map, dtype=torch.float32)
# near_point_map = torch.zeros_like(point_map, dtype=torch.float32)
# refresh_point_map = point_map.clone()
refresh_confidence_map = confidence_map.clone()
# 创建图像的索引
row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W))
row_idx = row_idx.flatten()
col_idx = col_idx.flatten()
kernel_size = 5
offset_range = kernel_size // 2
neighbor_offsets = [
(dx, dy) for dx in range(-offset_range, offset_range + 1)
for dy in range(-offset_range, offset_range + 1)
if not (dx == 0 and dy == 0)
]
# 对每个像素点进行计算(仅在当前图像内计算邻域关系)
for offset in neighbor_offsets:
# 计算邻居位置
neighbor_row = row_idx + offset[0]
neighbor_col = col_idx + offset[1]
# 确保邻居在图像内部
valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W)
valid_row = neighbor_row[valid_mask]
valid_col = neighbor_col[valid_mask]
# 获取有效像素点的索引
idx = valid_mask.nonzero(as_tuple=True)[0]
neighbor_idx = valid_row * W + valid_col
# 获取相邻像素点的语义标签和空间坐标
sem_i = semantic_map[idx]
sem_j = semantic_map[neighbor_idx]
p_i = point_map[idx]
p_j = point_map[neighbor_idx]
# 计算空间坐标差异的平方
distance = torch.sum((p_i - p_j)**2, dim=1)
same_object = (sem_i == sem_j) & (sem_i != -1) & (sem_j != -1)
dist_map[idx] += same_object * distance
cnt_map[idx] += same_object
anomaly_point = (dist_map / cnt_map)
tmp = (cnt_map==0)
idx = tmp.nonzero(as_tuple=True)[0]
anomaly_point[idx] = 0
mean = torch.mean(anomaly_point)
std = torch.std(anomaly_point)
anomaly_point = (anomaly_point - mean) / std
anomaly_point = (anomaly_point > 0)#0.005) #& (cnt_map != 0)
anomaly_point_idx = anomaly_point.nonzero(as_tuple=True)[0]
refresh_confidence_map[anomaly_point_idx] = -1
return refresh_confidence_map.view(H, W)
# @torch.cuda.amp.autocast(enabled=False)
def compute_global_alignment(self, tune_flg=False, init=None, niter_PnP=10, **kw):
if tune_flg:
for e, (i, j) in enumerate(self.edges):
i_j = edge_str(i, j)
self.conf_i[i_j] = self.spatial_select_points(self.pred_i[i_j], self.rev_segmaps[i], self.conf_i[i_j])
self.conf_j[i_j] = self.spatial_select_points(self.pred_j[i_j], self.rev_segmaps[j], self.conf_j[i_j])
self.im_conf[i] = self.conf_i[i_j]
self.im_conf[j] = self.conf_j[i_j]
threshold = 0.25
for i in range(len(self.imgs)):
# self.imgs[i] = self.ori_imgs[i]
anomaly_mask = (self.im_conf[i] == -1)
unique_labels = torch.unique(self.rev_segmaps[i])
# self.imgs[i][anomaly_mask.cpu()] = self.smoothed_imgs[i][anomaly_mask.cpu()]
for label in unique_labels:
semantic_mask = (self.rev_segmaps[i] == label)
if label == -1:
continue
cover = (semantic_mask & anomaly_mask).sum() / semantic_mask.sum()
if cover > threshold:
self.imgs[i][semantic_mask.cpu()] = self.smoothed_imgs[i][semantic_mask.cpu()]
for j in range(len(self.imgs)):
if j == i:
continue
semantic_mask = (self.rev_segmaps[j] == label)
self.imgs[j][semantic_mask.cpu()] = self.smoothed_imgs[j][semantic_mask.cpu()]
if init is None:
pass
elif init == 'msp' or init == 'mst':
init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP)
elif init == 'known_poses':
init_fun.init_from_known_poses(self, min_conf_thr=self.min_conf_thr,
niter_PnP=niter_PnP)
else:
raise ValueError(f'bad value for {init=}')
if tune_flg:
return 0
loss = global_alignment_loop(self, **kw)
return loss
@torch.no_grad()
def mask_sky(self):
res = deepcopy(self)
for i in range(self.n_imgs):
sky = segment_sky(self.imgs[i])
res.im_conf[i][sky] = 0
return res
def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw):
viz = SceneViz()
if self.imgs is None:
colors = np.random.randint(0, 256, size=(self.n_imgs, 3))
colors = list(map(tuple, colors.tolist()))
for n in range(self.n_imgs):
viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n])
else:
viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks())
colors = np.random.randint(256, size=(self.n_imgs, 3))
# camera poses
im_poses = to_numpy(self.get_im_poses())
if cam_size is None:
cam_size = auto_cam_size(im_poses)
viz.add_cameras(im_poses, self.get_focals(), colors=colors,
images=self.imgs, imsizes=self.imsizes, cam_size=cam_size)
if show_pw_cams:
pw_poses = self.get_pw_poses()
viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size)
if show_pw_pts3d:
pts = [geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) for e, (i, j) in enumerate(self.edges)]
viz.add_pointcloud(pts, (128, 0, 128))
viz.show(**kw)
return viz
def global_alignment_loop(net, lr=0.01, niter=300, schedule='cosine', lr_min=1e-6):
# return net
params = [p for p in net.parameters() if p.requires_grad]
# for param in params:
# print(param.shape)
if not params:
return net
verbose = net.verbose
if verbose:
print('Global alignement - optimizing for:')
print([name for name, value in net.named_parameters() if value.requires_grad])
lr_base = lr
optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9))
loss = float('inf')
if verbose:
with tqdm.tqdm(total=niter) as bar:
while bar.n < bar.total:
loss, lr = global_alignment_iter(net, bar.n, niter, lr_base, lr_min, optimizer, schedule)
bar.set_postfix_str(f'{lr=:g} loss={loss:g}')
bar.update()
else:
for n in range(niter):
loss, _ = global_alignment_iter(net, n, niter, lr_base, lr_min, optimizer, schedule)
return loss
def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule):
t = cur_iter / niter
if schedule == 'cosine':
lr = cosine_schedule(t, lr_base, lr_min)
elif schedule == 'linear':
lr = linear_schedule(t, lr_base, lr_min)
else:
raise ValueError(f'bad lr {schedule=}')
adjust_learning_rate_by_lr(optimizer, lr)
optimizer.zero_grad()
loss = net(cur_iter)
if loss == 0:
optimizer.step()
return float(loss), lr
loss.backward()
optimizer.step()
return float(loss), lr
@torch.no_grad()
def clean_pointcloud( im_confs, K, cams, depthmaps, all_pts3d,
tol=0.001, bad_conf=0, dbg=()):
""" Method:
1) express all 3d points in each camera coordinate frame
2) if they're in front of a depthmap --> then lower their confidence
"""
assert len(im_confs) == len(cams) == len(K) == len(depthmaps) == len(all_pts3d)
assert 0 <= tol < 1
res = [c.clone() for c in im_confs]
# reshape appropriately
all_pts3d = [p.view(*c.shape,3) for p,c in zip(all_pts3d, im_confs)]
depthmaps = [d.view(*c.shape) for d,c in zip(depthmaps, im_confs)]
for i, pts3d in enumerate(all_pts3d):
for j in range(len(all_pts3d)):
if i == j: continue
# project 3dpts in other view
proj = geotrf(cams[j], pts3d)
proj_depth = proj[:,:,2]
u,v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1)
# check which points are actually in the visible cone
H, W = im_confs[j].shape
msk_i = (proj_depth > 0) & (0 <= u) & (u < W) & (0 <= v) & (v < H)
msk_j = v[msk_i], u[msk_i]
# find bad points = those in front but less confident
bad_points = (proj_depth[msk_i] < (1-tol) * depthmaps[j][msk_j]) & (res[i][msk_i] < res[j][msk_j])
bad_msk_i = msk_i.clone()
bad_msk_i[msk_i] = bad_points
res[i][bad_msk_i] = res[i][bad_msk_i].clip_(max=bad_conf)
return res