Spaces:
Running
Running
update initialize_model_once and create_llm_pipeline for GGUF model, add llama_cpp, add fallback hierarchy system
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
|
|
3 |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU only
|
4 |
import uuid
|
5 |
import threading
|
@@ -10,9 +12,13 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.llms import HuggingFacePipeline
|
12 |
from langchain.chains import LLMChain
|
13 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, pipeline
|
14 |
from langchain.prompts import PromptTemplate
|
15 |
-
import
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Global model cache
|
18 |
MODEL_CACHE = {
|
@@ -34,7 +40,7 @@ MODEL_CONFIG = {
|
|
34 |
},
|
35 |
"TinyLlama Chat": {
|
36 |
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
37 |
-
"description": "
|
38 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
39 |
},
|
40 |
"Mistral Instruct": {
|
@@ -44,12 +50,12 @@ MODEL_CONFIG = {
|
|
44 |
},
|
45 |
"Phi-4 Mini Instruct": {
|
46 |
"name": "microsoft/Phi-4-mini-instruct",
|
47 |
-
"description": "
|
48 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
49 |
},
|
50 |
"DeepSeek Coder Instruct": {
|
51 |
"name": "deepseek-ai/deepseek-coder-1.3b-instruct",
|
52 |
-
"description": "1.3B model
|
53 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
54 |
},
|
55 |
"DeepSeek Lite Chat": {
|
@@ -75,15 +81,22 @@ MODEL_CONFIG = {
|
|
75 |
}
|
76 |
}
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def initialize_model_once(model_key):
|
79 |
-
"""Initialize the model once and cache it"""
|
80 |
with MODEL_CACHE["init_lock"]:
|
81 |
current_model = MODEL_CACHE["model_name"]
|
82 |
if MODEL_CACHE["model"] is None or current_model != model_key:
|
83 |
-
# Clear previous model
|
84 |
if MODEL_CACHE["model"] is not None:
|
85 |
del MODEL_CACHE["model"]
|
86 |
-
|
|
|
87 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
88 |
|
89 |
model_info = MODEL_CONFIG[model_key]
|
@@ -92,8 +105,45 @@ def initialize_model_once(model_key):
|
|
92 |
|
93 |
try:
|
94 |
print(f"Loading model: {model_name}")
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name)
|
98 |
MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained(
|
99 |
model_name,
|
@@ -101,16 +151,27 @@ def initialize_model_once(model_key):
|
|
101 |
device_map="auto" if torch.cuda.is_available() else None,
|
102 |
low_cpu_mem_usage=True
|
103 |
)
|
|
|
|
|
|
|
104 |
else:
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
107 |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
108 |
model_name,
|
|
|
109 |
torch_dtype=model_info["dtype"],
|
110 |
device_map="auto" if torch.cuda.is_available() else None,
|
111 |
low_cpu_mem_usage=True,
|
112 |
trust_remote_code=True
|
113 |
)
|
|
|
|
|
114 |
print(f"Model {model_name} loaded successfully")
|
115 |
except Exception as e:
|
116 |
import traceback
|
@@ -118,28 +179,39 @@ def initialize_model_once(model_key):
|
|
118 |
print(traceback.format_exc())
|
119 |
raise RuntimeError(f"Failed to load model {model_name}: {str(e)}")
|
120 |
|
121 |
-
|
122 |
-
raise ValueError(f"Model or tokenizer not initialized properly for {model_key}")
|
123 |
-
|
124 |
-
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], model_info.get("is_t5", False)
|
125 |
|
126 |
def create_llm_pipeline(model_key):
|
127 |
"""Create a new pipeline using the specified model"""
|
128 |
try:
|
129 |
print(f"Creating pipeline for model: {model_key}")
|
130 |
-
tokenizer, model,
|
131 |
|
132 |
-
if model is None
|
133 |
-
raise ValueError(f"Model
|
134 |
|
135 |
-
#
|
136 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
print("Creating T5 pipeline")
|
138 |
pipe = pipeline(
|
139 |
"text2text-generation",
|
140 |
model=model,
|
141 |
tokenizer=tokenizer,
|
142 |
-
max_new_tokens=128,
|
143 |
temperature=0.3,
|
144 |
top_p=0.9,
|
145 |
return_full_text=False,
|
@@ -150,7 +222,7 @@ def create_llm_pipeline(model_key):
|
|
150 |
"text-generation",
|
151 |
model=model,
|
152 |
tokenizer=tokenizer,
|
153 |
-
max_new_tokens=128,
|
154 |
temperature=0.3,
|
155 |
top_p=0.9,
|
156 |
top_k=30,
|
@@ -159,13 +231,73 @@ def create_llm_pipeline(model_key):
|
|
159 |
)
|
160 |
|
161 |
print("Pipeline created successfully")
|
162 |
-
# Wrap pipeline in HuggingFacePipeline for LangChain compatibility
|
163 |
return HuggingFacePipeline(pipeline=pipe)
|
164 |
except Exception as e:
|
165 |
import traceback
|
166 |
print(f"Error creating pipeline: {str(e)}")
|
167 |
print(traceback.format_exc())
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
def create_conversational_chain(db, file_path, model_key):
|
171 |
llm = create_llm_pipeline(model_key)
|
@@ -523,10 +655,27 @@ def create_gradio_interface():
|
|
523 |
def handle_process_file(file, model_key, sess_id):
|
524 |
if file is None:
|
525 |
return None, None, False, "Mohon upload file CSV terlebih dahulu."
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
530 |
|
531 |
process_button.click(
|
532 |
fn=handle_process_file,
|
|
|
1 |
import gradio as gr
|
2 |
+
import gc
|
3 |
import os
|
4 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
5 |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU only
|
6 |
import uuid
|
7 |
import threading
|
|
|
12 |
from langchain.vectorstores import FAISS
|
13 |
from langchain.llms import HuggingFacePipeline
|
14 |
from langchain.chains import LLMChain
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, BitsAndBytesConfig, pipeline
|
16 |
from langchain.prompts import PromptTemplate
|
17 |
+
from llama_cpp import Llama
|
18 |
+
import re
|
19 |
+
import datetime
|
20 |
+
import warnings
|
21 |
+
warnings.filterwarnings('ignore')
|
22 |
|
23 |
# Global model cache
|
24 |
MODEL_CACHE = {
|
|
|
40 |
},
|
41 |
"TinyLlama Chat": {
|
42 |
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
43 |
+
"description": "Model ringan dengan 1.1B parameter, cepat dan ringan",
|
44 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
45 |
},
|
46 |
"Mistral Instruct": {
|
|
|
50 |
},
|
51 |
"Phi-4 Mini Instruct": {
|
52 |
"name": "microsoft/Phi-4-mini-instruct",
|
53 |
+
"description": "Model yang ringan dari Microsoft cocok untuk tugas instruksional",
|
54 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
55 |
},
|
56 |
"DeepSeek Coder Instruct": {
|
57 |
"name": "deepseek-ai/deepseek-coder-1.3b-instruct",
|
58 |
+
"description": "1.3B model untuk kode dan analisis data",
|
59 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
60 |
},
|
61 |
"DeepSeek Lite Chat": {
|
|
|
81 |
}
|
82 |
}
|
83 |
|
84 |
+
# Tambahkan model fallback ke MODEL_CONFIG
|
85 |
+
MODEL_CONFIG["Fallback Model"] = {
|
86 |
+
"name": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
|
87 |
+
"description": "Model sangat ringan untuk fallback",
|
88 |
+
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
89 |
+
}
|
90 |
+
|
91 |
def initialize_model_once(model_key):
|
|
|
92 |
with MODEL_CACHE["init_lock"]:
|
93 |
current_model = MODEL_CACHE["model_name"]
|
94 |
if MODEL_CACHE["model"] is None or current_model != model_key:
|
95 |
+
# Clear previous model
|
96 |
if MODEL_CACHE["model"] is not None:
|
97 |
del MODEL_CACHE["model"]
|
98 |
+
if MODEL_CACHE["tokenizer"] is not None:
|
99 |
+
del MODEL_CACHE["tokenizer"]
|
100 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
101 |
|
102 |
model_info = MODEL_CONFIG[model_key]
|
|
|
105 |
|
106 |
try:
|
107 |
print(f"Loading model: {model_name}")
|
108 |
+
|
109 |
+
# Periksa apakah ini model GGUF
|
110 |
+
if "GGUF" in model_name:
|
111 |
+
# Download model file terlebih dahulu jika belum ada
|
112 |
+
from huggingface_hub import hf_hub_download
|
113 |
+
try:
|
114 |
+
# Coba temukan file GGUF di repo
|
115 |
+
repo_id = model_name
|
116 |
+
model_path = hf_hub_download(
|
117 |
+
repo_id=repo_id,
|
118 |
+
filename="model.gguf" # Nama file dapat berbeda
|
119 |
+
)
|
120 |
+
except Exception as e:
|
121 |
+
print(f"Couldn't find model.gguf, trying other filenames: {str(e)}")
|
122 |
+
# Coba cari file GGUF dengan nama lain
|
123 |
+
import requests
|
124 |
+
from huggingface_hub import list_repo_files
|
125 |
+
|
126 |
+
files = list_repo_files(repo_id)
|
127 |
+
gguf_files = [f for f in files if f.endswith('.gguf')]
|
128 |
+
|
129 |
+
if not gguf_files:
|
130 |
+
raise ValueError(f"No GGUF files found in {repo_id}")
|
131 |
+
|
132 |
+
# Gunakan file GGUF pertama yang ditemukan
|
133 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=gguf_files[0])
|
134 |
+
|
135 |
+
# Load model GGUF dengan llama-cpp-python
|
136 |
+
MODEL_CACHE["model"] = Llama(
|
137 |
+
model_path=model_path,
|
138 |
+
n_ctx=2048, # Konteks yang lebih kecil untuk penghematan memori
|
139 |
+
n_batch=512,
|
140 |
+
n_threads=2 # Sesuaikan dengan 2 vCPU
|
141 |
+
)
|
142 |
+
MODEL_CACHE["tokenizer"] = None # GGUF tidak membutuhkan tokenizer terpisah
|
143 |
+
MODEL_CACHE["is_gguf"] = True
|
144 |
+
|
145 |
+
# Handle T5 models
|
146 |
+
elif model_info.get("is_t5", False):
|
147 |
MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name)
|
148 |
MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained(
|
149 |
model_name,
|
|
|
151 |
device_map="auto" if torch.cuda.is_available() else None,
|
152 |
low_cpu_mem_usage=True
|
153 |
)
|
154 |
+
MODEL_CACHE["is_gguf"] = False
|
155 |
+
|
156 |
+
# Handle standard HF models
|
157 |
else:
|
158 |
+
quantization_config = BitsAndBytesConfig(
|
159 |
+
load_in_4bit=True,
|
160 |
+
bnb_4bit_compute_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
161 |
+
bnb_4bit_quant_type="nf4",
|
162 |
+
bnb_4bit_use_double_quant=True
|
163 |
+
)
|
164 |
+
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
165 |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
166 |
model_name,
|
167 |
+
quantization_config=quantization_config,
|
168 |
torch_dtype=model_info["dtype"],
|
169 |
device_map="auto" if torch.cuda.is_available() else None,
|
170 |
low_cpu_mem_usage=True,
|
171 |
trust_remote_code=True
|
172 |
)
|
173 |
+
MODEL_CACHE["is_gguf"] = False
|
174 |
+
|
175 |
print(f"Model {model_name} loaded successfully")
|
176 |
except Exception as e:
|
177 |
import traceback
|
|
|
179 |
print(traceback.format_exc())
|
180 |
raise RuntimeError(f"Failed to load model {model_name}: {str(e)}")
|
181 |
|
182 |
+
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], MODEL_CACHE.get("is_gguf", False)
|
|
|
|
|
|
|
183 |
|
184 |
def create_llm_pipeline(model_key):
|
185 |
"""Create a new pipeline using the specified model"""
|
186 |
try:
|
187 |
print(f"Creating pipeline for model: {model_key}")
|
188 |
+
tokenizer, model, is_gguf = initialize_model_once(model_key)
|
189 |
|
190 |
+
if model is None:
|
191 |
+
raise ValueError(f"Model is None for {model_key}")
|
192 |
|
193 |
+
# For GGUF models from llama-cpp-python
|
194 |
+
if is_gguf:
|
195 |
+
# Buat adaptor untuk menggunakan model GGUF seperti HF pipeline
|
196 |
+
from langchain.llms import LlamaCpp
|
197 |
+
llm = LlamaCpp(
|
198 |
+
model_path=model.model_path,
|
199 |
+
temperature=0.3,
|
200 |
+
max_tokens=128,
|
201 |
+
top_p=0.9,
|
202 |
+
n_ctx=2048,
|
203 |
+
streaming=False
|
204 |
+
)
|
205 |
+
return llm
|
206 |
+
|
207 |
+
# Create appropriate pipeline for HF models
|
208 |
+
elif getattr(model_info, "is_t5", False):
|
209 |
print("Creating T5 pipeline")
|
210 |
pipe = pipeline(
|
211 |
"text2text-generation",
|
212 |
model=model,
|
213 |
tokenizer=tokenizer,
|
214 |
+
max_new_tokens=128,
|
215 |
temperature=0.3,
|
216 |
top_p=0.9,
|
217 |
return_full_text=False,
|
|
|
222 |
"text-generation",
|
223 |
model=model,
|
224 |
tokenizer=tokenizer,
|
225 |
+
max_new_tokens=128,
|
226 |
temperature=0.3,
|
227 |
top_p=0.9,
|
228 |
top_k=30,
|
|
|
231 |
)
|
232 |
|
233 |
print("Pipeline created successfully")
|
|
|
234 |
return HuggingFacePipeline(pipeline=pipe)
|
235 |
except Exception as e:
|
236 |
import traceback
|
237 |
print(f"Error creating pipeline: {str(e)}")
|
238 |
print(traceback.format_exc())
|
239 |
+
|
240 |
+
# Fallback ke model sederhana jika yang utama gagal
|
241 |
+
if model_key != "Fallback Model":
|
242 |
+
print(f"Trying fallback model")
|
243 |
+
try:
|
244 |
+
return create_fallback_pipeline()
|
245 |
+
except:
|
246 |
+
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
247 |
+
else:
|
248 |
+
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
249 |
+
|
250 |
+
def create_fallback_pipeline():
|
251 |
+
"""Create a fallback pipeline with a very small model"""
|
252 |
+
model_key = "Fallback Model"
|
253 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_CONFIG[model_key]["name"])
|
254 |
+
model = AutoModelForCausalLM.from_pretrained(
|
255 |
+
MODEL_CONFIG[model_key]["name"],
|
256 |
+
torch_dtype=MODEL_CONFIG[model_key]["dtype"],
|
257 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
258 |
+
low_cpu_mem_usage=True
|
259 |
+
)
|
260 |
+
|
261 |
+
pipe = pipeline(
|
262 |
+
"text-generation",
|
263 |
+
model=model,
|
264 |
+
tokenizer=tokenizer,
|
265 |
+
max_new_tokens=128,
|
266 |
+
temperature=0.3,
|
267 |
+
return_full_text=False,
|
268 |
+
)
|
269 |
+
|
270 |
+
return HuggingFacePipeline(pipeline=pipe)
|
271 |
+
|
272 |
+
def handle_model_loading_error(model_key, session_id):
|
273 |
+
"""Handle model loading errors with fallback options"""
|
274 |
+
fallback_hierarchy = [
|
275 |
+
"DeepSeek Coder Instruct", # 1.3B model
|
276 |
+
"Phi-4", # 1.5B model
|
277 |
+
"TinyLlama-Chat", # 1.1B model
|
278 |
+
"Flan-T5-Small" # Paling ringan
|
279 |
+
]
|
280 |
+
|
281 |
+
# Jika model yang gagal sudah merupakan fallback terakhir, berikan pesan error
|
282 |
+
if model_key == fallback_hierarchy[-1]:
|
283 |
+
return None, f"Tidak dapat memuat model {model_key}. Harap coba lagi nanti."
|
284 |
+
|
285 |
+
# Temukan posisi model yang gagal dalam hirarki
|
286 |
+
try:
|
287 |
+
current_index = fallback_hierarchy.index(model_key)
|
288 |
+
except ValueError:
|
289 |
+
current_index = -1
|
290 |
+
|
291 |
+
# Coba model berikutnya dalam hirarki
|
292 |
+
for fallback_model in fallback_hierarchy[current_index+1:]:
|
293 |
+
try:
|
294 |
+
print(f"Trying fallback model: {fallback_model}")
|
295 |
+
chatbot = ChatBot(session_id, fallback_model)
|
296 |
+
return chatbot, f"Model {model_key} tidak tersedia. Menggunakan {fallback_model} sebagai alternatif."
|
297 |
+
except Exception as e:
|
298 |
+
print(f"Fallback model {fallback_model} also failed: {str(e)}")
|
299 |
+
|
300 |
+
return None, "Semua model gagal dimuat. Harap coba lagi nanti."
|
301 |
|
302 |
def create_conversational_chain(db, file_path, model_key):
|
303 |
llm = create_llm_pipeline(model_key)
|
|
|
655 |
def handle_process_file(file, model_key, sess_id):
|
656 |
if file is None:
|
657 |
return None, None, False, "Mohon upload file CSV terlebih dahulu."
|
658 |
+
|
659 |
+
try:
|
660 |
+
chatbot = ChatBot(sess_id, model_key)
|
661 |
+
result = chatbot.process_file(file)
|
662 |
+
return chatbot, True, [(None, result)]
|
663 |
+
except Exception as e:
|
664 |
+
import traceback
|
665 |
+
print(f"Error processing file with {model_key}: {str(e)}")
|
666 |
+
print(traceback.format_exc())
|
667 |
+
|
668 |
+
# Coba dengan model fallback
|
669 |
+
try:
|
670 |
+
chatbot, message = handle_model_loading_error(model_key, sess_id)
|
671 |
+
if chatbot is not None:
|
672 |
+
result = chatbot.process_file(file)
|
673 |
+
return chatbot, True, [(None, message), (None, result)]
|
674 |
+
else:
|
675 |
+
return None, False, [(None, message)]
|
676 |
+
except Exception as fb_err:
|
677 |
+
error_msg = f"Error dengan model {model_key}: {str(e)}\n\nFallback juga gagal: {str(fb_err)}"
|
678 |
+
return None, False, [(None, error_msg)]
|
679 |
|
680 |
process_button.click(
|
681 |
fn=handle_process_file,
|