File size: 54,966 Bytes
1b75011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
import base64
import io
import random

import dash
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Input, Output, State, callback, dcc, html

# Initialize the Dash app
app = dash.Dash(__name__, suppress_callback_exceptions=True)
server = app.server


# Define app layout
app.layout = html.Div(
    [
        # Header
        html.Div(
            [
                html.H1(
                    "Sessions Observatory by helvia.ai 🔭📊",
                    className="app-header",
                ),
                html.P(
                    "Upload a CSV/Excel file to visualize the chatbot's dialog topics.",
                    className="app-description",
                ),
            ],
            className="header-container",
        ),
        # File Upload Component
        html.Div(
            [
                dcc.Upload(
                    id="upload-data",
                    children=html.Div(
                        [
                            html.Div("Drag and Drop", className="upload-text"),
                            html.Div("or", className="upload-divider"),
                            html.Div(
                                html.Button("Select a File", className="upload-button")
                            ),
                        ],
                        className="upload-content",
                    ),
                    style={
                        "width": "100%",
                        "height": "120px",
                        "lineHeight": "60px",
                        "borderWidth": "1px",
                        "borderStyle": "dashed",
                        "borderRadius": "0.5rem",
                        "textAlign": "center",
                        "margin": "10px 0",
                        "backgroundColor": "hsl(210, 40%, 98%)",
                        "borderColor": "hsl(214.3, 31.8%, 91.4%)",
                        "cursor": "pointer",
                    },
                    multiple=False,
                ),
                # Status message with more padding and emphasis
                html.Div(
                    id="upload-status",
                    className="upload-status-message",
                    style={"display": "none"},  # Initially hidden
                ),
            ],
            className="upload-container",
        ),
        # Main Content Area (hidden until file is uploaded)
        html.Div(
            [
                # Dashboard layout with flexible grid
                html.Div(
                    [
                        # Left side: Bubble chart
                        html.Div(
                            [
                                html.H3(
                                    id="topic-distribution-header",
                                    children="Sessions Observatory",
                                    className="section-header",
                                ),
                                # dcc.Graph(id="bubble-chart", style={"height": "80vh"}),
                                dcc.Graph(
                                    id="bubble-chart",
                                    style={"height": "calc(100% - 154px)"},
                                ),  # this does not work for some reason
                                html.Div(
                                    [
                                        # Only keep Color by
                                        html.Div(
                                            [
                                                html.Div(
                                                    html.Label(
                                                        "Color by:",
                                                        className="control-label",
                                                    ),
                                                    className="control-label-container",
                                                ),
                                            ],
                                            className="control-labels-row",
                                        ),
                                        # Only keep Color by options
                                        html.Div(
                                            [
                                                html.Div(
                                                    dcc.RadioItems(
                                                        id="color-metric",
                                                        options=[
                                                            {
                                                                "label": "Sentiment",
                                                                "value": "negative_rate",
                                                            },
                                                            {
                                                                "label": "Resolution",
                                                                "value": "unresolved_rate",
                                                            },
                                                            {
                                                                "label": "Urgency",
                                                                "value": "urgent_rate",
                                                            },
                                                        ],
                                                        value="negative_rate",
                                                        inline=True,
                                                        className="radio-group",
                                                        inputClassName="radio-input",
                                                        labelClassName="radio-label",
                                                    ),
                                                    className="radio-container",
                                                ),
                                            ],
                                            className="control-options-row",
                                        ),
                                    ],
                                    className="chart-controls",
                                ),
                            ],
                            className="chart-container",
                        ),
                        # Right side: Interactive sidebar with topic details
                        html.Div(
                            [
                                html.Div(
                                    [
                                        html.H3(
                                            "Topic Details", className="section-header"
                                        ),
                                        html.Div(
                                            id="topic-title", className="topic-title"
                                        ),
                                        html.Div(
                                            [
                                                html.Div(
                                                    [
                                                        html.H4(
                                                            "Metadata",
                                                            className="subsection-header",
                                                        ),
                                                        html.Div(
                                                            id="topic-metadata",
                                                            className="metadata-container",
                                                        ),
                                                    ],
                                                    className="metadata-section",
                                                ),
                                                html.Div(
                                                    [
                                                        html.H4(
                                                            "Key Metrics",
                                                            className="subsection-header",
                                                        ),
                                                        html.Div(
                                                            id="topic-metrics",
                                                            className="metrics-container",
                                                        ),
                                                    ],
                                                    className="metrics-section",
                                                ),
                                                # Added Tags section
                                                html.Div(
                                                    [
                                                        html.H4(
                                                            "Tags",
                                                            className="subsection-header",
                                                        ),
                                                        html.Div(
                                                            id="important-tags",
                                                            className="tags-container",
                                                        ),
                                                    ]
                                                ),
                                            ],
                                            className="details-section",
                                        ),
                                        html.Div(
                                            [
                                                html.H4(
                                                    "Sample Dialogs (Summary)",
                                                    className="subsection-header",
                                                ),
                                                html.Div(
                                                    id="sample-dialogs",
                                                    className="sample-dialogs-container",
                                                ),
                                            ],
                                            className="samples-section",
                                        ),
                                    ],
                                    className="topic-details-content",
                                ),
                                html.Div(
                                    id="no-topic-selected",
                                    children=[
                                        html.Div(
                                            [
                                                html.I(
                                                    className="fas fa-info-circle info-icon"
                                                ),
                                                html.H3("No topic selected"),
                                                html.P(
                                                    "Click or hover on a bubble to view topic details."
                                                ),
                                            ],
                                            className="no-selection-message",
                                        )
                                    ],
                                    className="no-selection-container",
                                ),
                            ],
                            className="sidebar-container",
                        ),
                    ],
                    className="dashboard-container",
                )
            ],
            id="main-content",
            style={"display": "none"},
        ),
        # Store the processed data
        dcc.Store(id="stored-data"),
    ],
    className="app-container",
)

# Define CSS for the app
app.index_string = """
<!DOCTYPE html>
<html>
    <head>
        {%metas%}
        <title>Sessions Observatory by helvia.ai 🔭📊</title>
        {%favicon%}
        {%css%}
        <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
        <style>
            @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');

            :root {
                --background: hsl(210, 20%, 95%);
                --foreground: hsl(222.2, 84%, 4.9%);
                --card: hsl(0, 0%, 100%);
                --card-foreground: hsl(222.2, 84%, 4.9%);
                --popover: hsl(0, 0%, 100%);
                --popover-foreground: hsl(222.2, 84%, 4.9%);
                --primary: hsl(222.2, 47.4%, 11.2%);
                --primary-foreground: hsl(210, 40%, 98%);
                --secondary: hsl(210, 40%, 96.1%);
                --secondary-foreground: hsl(222.2, 47.4%, 11.2%);
                --muted: hsl(210, 40%, 96.1%);
                --muted-foreground: hsl(215.4, 16.3%, 46.9%);
                --accent: hsl(210, 40%, 96.1%);
                --accent-foreground: hsl(222.2, 47.4%, 11.2%);
                --destructive: hsl(0, 84.2%, 60.2%);
                --destructive-foreground: hsl(210, 40%, 98%);
                --border: hsl(214.3, 31.8%, 91.4%);
                --input: hsl(214.3, 31.8%, 91.4%);
                --ring: hsl(222.2, 84%, 4.9%);
                --radius: 0.5rem;
            }

            * {
                margin: 0;
                padding: 0;
                box-sizing: border-box;
                font-family: 'Inter', sans-serif;
            }

            body {
                background-color: var(--background);
                color: var(--foreground);
                font-feature-settings: "rlig" 1, "calt" 1;
            }

            .app-container {
                max-width: 2500px;
                margin: 0 auto;
                padding: 1.5rem;
                background-color: var(--background);
                min-height: 100vh;
                display: flex;
                flex-direction: column;
            }

            .header-container {
                margin-bottom: 2rem;
                text-align: center;
            }

            .app-header {
                color: var(--foreground);
                margin-bottom: 0.75rem;
                font-weight: 600;
                font-size: 2rem;
                line-height: 1.2;
            }

            .app-description {
                color: var(--muted-foreground);
                font-size: 1rem;
                line-height: 1.5;
            }

            .upload-container {
                margin-bottom: 2rem;
                max-width: 800px;
                margin-left: auto;
                margin-right: auto;
            }

            .upload-content {
                display: flex;
                flex-direction: column;
                align-items: center;
                justify-content: center;
                height: 80%;
                padding: 1.5rem;
                position: relative;
            }

            .upload-text {
                font-size: 1rem;
                color: var(--primary);
                font-weight: 500;
            }

            .upload-divider {
                color: var(--muted-foreground);
                margin: 0.5rem 0;
                font-size: 0.875rem;
            }

            .upload-button {
                background-color: var(--primary);
                color: var(--primary-foreground);
                border: none;
                padding: 0.5rem 1rem;
                border-radius: var(--radius);
                font-size: 0.875rem;
                cursor: pointer;
                transition: opacity 0.2s;
                font-weight: 500;
                box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
                height: 2.5rem;
            }

            .upload-button:hover {
                opacity: 0.9;
            }

            /* Status message styling */
            .upload-status-message {
                margin-top: 1rem;
                padding: 0.75rem;
                font-weight: 500;
                text-align: center;
                border-radius: var(--radius);
                font-size: 0.875rem;
                transition: all 0.3s ease;
                background-color: var(--secondary);
                color: var(--secondary-foreground);
            }

            /* Chart controls styling */
            .chart-controls {
                margin-top: 1rem;
                display: flex;
                flex-direction: column;
                gap: 0.75rem;
                padding: 1rem;
                background-color: var(--card);
                border-radius: var(--radius);
                border: 1px solid var(--border);
                box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
            }

            .control-labels-row {
                display: flex;
                width: 100%;
            }

            .control-options-row {
                display: flex;
                width: 100%;
            }

            .control-label-container {
                padding: 0 0.5rem;
                text-align: left;
            }

            .control-label {
                font-weight: 500;
                color: var(--foreground);
                font-size: 0.875rem;
                line-height: 1.25rem;
            }

            .radio-container {
                padding: 0 0.5rem;
                width: 100%;
            }

            .radio-group {
                display: flex;
                gap: 1rem;
            }

            .radio-input {
                margin-right: 0.375rem;
                cursor: pointer;
                height: 1rem;
                width: 1rem;
                border-radius: 9999px;
                border: 1px solid var(--border);
                appearance: none;
                -webkit-appearance: none;
                background-color: var(--background);
                transition: border-color 0.2s;
            }

            .radio-input:checked {
                border-color: var(--primary);
                background-color: var(--primary);
                background-image: url("data:image/svg+xml,%3csvg viewBox='0 0 16 16' fill='white' xmlns='http://www.w3.org/2000/svg'%3e%3ccircle cx='8' cy='8' r='3'/%3e%3c/svg%3e");
                background-size: 100% 100%;
                background-position: center;
                background-repeat: no-repeat;
            }

            .radio-label {
                font-weight: 400;
                color: var(--foreground);
                display: flex;
                align-items: center;
                cursor: pointer;
                font-size: 0.875rem;
                line-height: 1.25rem;
            }

            /* Dashboard container */
            .dashboard-container {
                display: flex;
                flex-wrap: wrap;
                gap: 1.5rem;
                flex: 1;
                height: 100%;
            }

            .chart-container {
                flex: 2.75;
                min-width: 400px;
                background: var(--card);
                border-radius: var(--radius);
                box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
                padding: 1rem;
                border: 0.75px solid var(--border);
                height: 100%;
            }

            .sidebar-container {
                flex: 1;
                min-width: 300px;
                background: var(--card);
                border-radius: var(--radius);
                box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
                padding: 1rem;
                position: relative;
                height: 100vh;
                overflow-y: auto;
                border: 1px solid var(--border);
                height: 100%;
            }

            .section-header {
                margin-bottom: 1rem;
                color: var(--foreground);
                border-bottom: 1px solid var(--border);
                padding-bottom: 0.75rem;
                font-weight: 600;
                font-size: 1.25rem;
            }

            .subsection-header {
                margin: 1rem 0 0.75rem;
                color: var(--foreground);
                font-size: 1rem;
                font-weight: 600;
            }

            .topic-title {
                font-size: 1.25rem;
                font-weight: 600;
                color: var(--foreground);
                margin-bottom: 1rem;
                padding: 0.5rem 0.75rem;
                background-color: var(--secondary);
                border-radius: var(--radius);
            }

            .metadata-container {
                display: flex;
                flex-wrap: wrap;
                gap: 0.75rem;
                margin-bottom: 1rem;
            }

            .metadata-item {
                background-color: var(--secondary);
                padding: 0.5rem 0.75rem;
                border-radius: var(--radius);
                font-size: 0.875rem;
                display: flex;
                align-items: center;
                color: var(--secondary-foreground);
            }

            .metadata-icon {
                margin-right: 0.5rem;
                color: var(--primary);
            }

            .metrics-container {
                display: flex;
                justify-content: space-between;
                gap: 0.75rem;
                margin-bottom: 0.75rem;
            }

            .metric-box {
                background-color: var(--card);
                border-radius: var(--radius);
                padding: 0.75rem;
                text-align: center;
                flex: 1;
                border: 1px solid var(--border);
            }

            .metric-box.negative {
                border-left: 3px solid var(--destructive);
            }

            .metric-box.unresolved {
                border-left: 3px solid hsl(47.9, 95.8%, 53.1%);
            }

            .metric-box.urgent {
                border-left: 3px solid hsl(217.2, 91.2%, 59.8%);
            }

            .metric-value {
                font-size: 1.5rem;
                font-weight: 600;
                margin-bottom: 0.25rem;
                color: var(--foreground);
                line-height: 1;
            }

            .metric-label {
                font-size: 0.75rem;
                color: var(--muted-foreground);
            }

            .sample-dialogs-container {
                margin-top: 0.75rem;
            }

            .dialog-item {
                background-color: var(--secondary);
                border-radius: var(--radius);
                padding: 1rem;
                margin-bottom: 0.75rem;
                border-left: 3px solid var(--primary);
            }

            .dialog-summary {
                font-size: 0.875rem;
                line-height: 1.5;
                margin-bottom: 0.5rem;
                color: var(--foreground);
            }

            .dialog-metadata {
                display: flex;
                flex-wrap: wrap;
                gap: 0.5rem;
                margin-top: 0.5rem;
                font-size: 0.75rem;
            }

            .dialog-tag {
                padding: 0.25rem 0.5rem;
                border-radius: var(--radius);
                font-size: 0.7rem;
                font-weight: 500;
            }

            .tag-sentiment {
                background-color: var(--destructive);
                color: var(--destructive-foreground);
            }

            .tag-resolution {
                background-color: hsl(47.9, 95.8%, 53.1%);
                color: hsl(222.2, 84%, 4.9%);
            }

            .tag-urgency {
                background-color: hsl(217.2, 91.2%, 59.8%);
                color: hsl(210, 40%, 98%);
            }

            .tag-chat-id {
                background-color: hsl(215.4, 16.3%, 46.9%);
                color: hsl(210, 40%, 98%);
                font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
                font-weight: 500;
            }

            .no-selection-container {
                position: absolute;
                top: 0;
                left: 0;
                right: 0;
                bottom: 0;
                display: flex;
                align-items: center;
                justify-content: center;
                background-color: hsla(0, 0%, 100%, 0.95);
                z-index: 10;
                border-radius: var(--radius);
            }

            .no-selection-message {
                text-align: center;
                color: var(--muted-foreground);
                padding: 1.5rem;
            }

            .info-icon {
                font-size: 2rem;
                margin-bottom: 0.75rem;
                color: var(--muted);
            }

            /* Tags container */
            .tags-container {
                display: flex;
                flex-wrap: wrap;
                gap: 8px;
                margin-top: 5px;
                margin-bottom: 15px;
                padding: 6px;
                border-radius: 8px;
                background-color: #f8f9fa;
            }


            .topic-tag {
                padding: 0.375rem 0.75rem;
                border-radius: var(--radius);
                font-size: 0.75rem;
                display: inline-flex;
                align-items: center;
                transition: all 0.2s ease;
                font-weight: 500;
                margin-bottom: 0.25rem;
                cursor: default;
                background-color: var(--muted);
                color: var(--muted-foreground);
                border: 1px solid var(--border);
            }

            .topic-tag {
                padding: 6px 12px;
                border-radius: 15px;
                font-size: 0.8rem;
                display: inline-flex;
                align-items: center;
                box-shadow: 0 1px 3px rgba(0,0,0,0.12);
                transition: all 0.2s ease;
                font-weight: 500;
                margin-bottom: 5px;
                cursor: default;
                border: 1px solid rgba(0,0,0,0.08);
                background-color: #6c757d;  /* Consistent medium gray color */
                color: white;
            }

            .topic-tag:hover {
                transform: translateY(-1px);
                box-shadow: 0 3px 5px rgba(0,0,0,0.15);
                background-color: #5a6268;  /* Slightly darker on hover */
            }

            .topic-tag-icon {
                margin-right: 5px;
                font-size: 0.7rem;
                opacity: 0.8;
                color: rgba(255, 255, 255, 0.9);
            }

            .no-tags-message {
                color: var(--muted-foreground);
                font-style: italic;
                padding: 0.75rem;
                text-align: center;
                width: 100%;
            }

            /* Responsive adjustments */
            @media (max-width: 768px) {
                .dashboard-container {
                    flex-direction: column;
                }
                .chart-container, .sidebar-container {
                    width: 100%;
                }
                .app-header {
                    font-size: 1.5rem;
                }
            }
        </style>
    </head>
    <body>
        {%app_entry%}
        <footer>
            {%config%}
            {%scripts%}
            {%renderer%}
        </footer>
    </body>
</html>
"""


@callback(
    Output("topic-distribution-header", "children"),
    Input("stored-data", "data"),
)
def update_topic_distribution_header(data):
    if not data:
        return "Sessions Observatory"  # Default when no data is available

    df = pd.DataFrame(data)
    total_dialogs = df["count"].sum()  # Sum up the 'count' column
    return f"Sessions Observatory ({total_dialogs} dialogs)"


# Define callback to process uploaded file
@callback(
    [
        Output("stored-data", "data"),
        Output("upload-status", "children"),
        Output("upload-status", "style"),  # Add style output for visibility
        Output("main-content", "style"),
    ],
    [Input("upload-data", "contents")],
    [State("upload-data", "filename")],
)
def process_upload(contents, filename):
    if contents is None:
        return None, "", {"display": "none"}, {"display": "none"}  # Keep hidden

    try:
        # Parse uploaded file
        content_type, content_string = contents.split(",")
        decoded = base64.b64decode(content_string)

        if "csv" in filename.lower():
            df = pd.read_csv(io.StringIO(decoded.decode("utf-8")))
        elif "xls" in filename.lower():
            df = pd.read_excel(io.BytesIO(decoded))
        else:
            return (
                None,
                html.Div(
                    [
                        html.I(
                            className="fas fa-exclamation-circle",
                            style={"color": "var(--destructive)", "marginRight": "8px"},
                        ),
                        "Please upload a CSV or Excel file.",
                    ],
                    style={"color": "var(--destructive)"},
                ),
                {"display": "block"},  # Make visible after error
                {"display": "none"},
            )

        # Process the dataframe to get topic statistics
        topic_stats = analyze_topics(df)

        return (
            topic_stats.to_dict("records"),
            html.Div(
                [
                    html.I(
                        className="fas fa-check-circle",
                        style={
                            "color": "hsl(142.1, 76.2%, 36.3%)",
                            "marginRight": "8px",
                        },
                    ),
                    f'Successfully uploaded "{filename}"',
                ],
                style={"color": "hsl(142.1, 76.2%, 36.3%)"},
            ),
            {"display": "block"},  # maybe add the above line here too #TODO
            {
                "display": "block",
                "height": "calc(100vh - 40px)",
            },  # Make visible after successful upload
        )

    except Exception as e:
        return (
            None,
            html.Div(
                [
                    html.I(
                        className="fas fa-exclamation-triangle",
                        style={"color": "var(--destructive)", "marginRight": "8px"},
                    ),
                    f"Error processing file: {str(e)}",
                ],
                style={"color": "var(--destructive)"},
            ),
            {"display": "block"},  # Make visible after error
            {"display": "none"},
        )


# Function to analyze the topics and create statistics
def analyze_topics(df):
    # Group by topic name and calculate metrics
    topic_stats = (
        df.groupby("deduplicated_topic_name")
        .agg(
            count=("id", "count"),
            negative_count=("Sentiment", lambda x: (x == "negative").sum()),
            unresolved_count=("Resolution", lambda x: (x == "unresolved").sum()),
            urgent_count=("Urgency", lambda x: (x == "urgent").sum()),
        )
        .reset_index()
    )

    # Calculate rates
    topic_stats["negative_rate"] = (
        topic_stats["negative_count"] / topic_stats["count"] * 100
    ).round(1)
    topic_stats["unresolved_rate"] = (
        topic_stats["unresolved_count"] / topic_stats["count"] * 100
    ).round(1)
    topic_stats["urgent_rate"] = (
        topic_stats["urgent_count"] / topic_stats["count"] * 100
    ).round(1)

    # Apply binned layout
    topic_stats = apply_binned_layout(topic_stats)

    return topic_stats


# New binned layout function


def apply_binned_layout(df, padding=0, bin_config=None, max_items_per_row=6):
    """
    Apply a binned layout where bubbles are grouped into rows based on dialog count.
    Bubbles in each row will be centered horizontally.

    Args:
        df: DataFrame containing the topic data
        padding: Padding from edges as percentage
        bin_config: List of tuples defining bin ranges and descriptions.
                    Example: [(300, None, "300+ dialogs"), (250, 299, "250-299 dialogs"), ...]
        max_items_per_row: Maximum number of items to display in a single row

    Returns:
        DataFrame with updated x, y positions
    """
    # Create a copy of the dataframe to avoid modifying the original
    df_sorted = df.copy()

    # Default bin configuration if none is provided
    # 8 rows x 6 bubbles is usually good
    if bin_config is None:
        bin_config = [
            (100, None, "100+ dialogs"),
            (50, 99, "50-99 dialogs"),
            (25, 49, "25-49 dialogs"),
            (9, 24, "9-24 dialogs"),
            (7, 8, "7-8 dialogs"),
            (5, 7, "5-6 dialogs"),
            (4, 4, "4 dialogs"),
            (0, 3, "0-3 dialogs"),
        ]

    # Generate bin descriptions and conditions dynamically
    bin_descriptions = {}
    conditions = []
    bin_values = []

    for i, (lower, upper, description) in enumerate(bin_config):
        bin_name = f"Bin {i + 1}"
        bin_descriptions[bin_name] = description
        bin_values.append(bin_name)

        if upper is None:  # No upper limit
            conditions.append(df_sorted["count"] >= lower)
        else:
            conditions.append(
                (df_sorted["count"] >= lower) & (df_sorted["count"] <= upper)
            )

    # Apply the conditions to create the bin column
    df_sorted["bin"] = np.select(conditions, bin_values, default="Bin 8")
    df_sorted["bin_description"] = df_sorted["bin"].map(bin_descriptions)

    # Sort by bin (ascending to get Bin 1 first) and by count (descending) within each bin
    df_sorted = df_sorted.sort_values(by=["bin", "count"], ascending=[True, False])

    # Now split bins that have more than max_items_per_row items
    original_bins = df_sorted["bin"].unique()
    new_rows = []
    new_bin_descriptions = bin_descriptions.copy()

    for bin_name in original_bins:
        bin_mask = df_sorted["bin"] == bin_name
        bin_group = df_sorted[bin_mask]
        bin_size = len(bin_group)

        # If bin has more items than max_items_per_row, split it
        if bin_size > max_items_per_row:
            # Calculate how many sub-bins we need
            num_sub_bins = (bin_size + max_items_per_row - 1) // max_items_per_row

            # Calculate items per sub-bin (distribute evenly)
            items_per_sub_bin = [bin_size // num_sub_bins] * num_sub_bins

            # Distribute the remainder one by one to achieve balance
            remainder = bin_size % num_sub_bins
            for i in range(remainder):
                items_per_sub_bin[i] += 1

            # Original bin description
            original_description = bin_descriptions[bin_name]

            # Create new row entries and update bin assignments
            start_idx = 0
            for i in range(num_sub_bins):
                # Create new bin name with sub-bin index
                new_bin_name = f"{bin_name}_{i + 1}"

                # Create new bin description with sub-bin index
                new_description = f"{original_description} ({i + 1}/{num_sub_bins})"
                new_bin_descriptions[new_bin_name] = new_description

                # Get slice of dataframe for this sub-bin
                end_idx = start_idx + items_per_sub_bin[i]
                sub_bin_rows = bin_group.iloc[start_idx:end_idx].copy()

                # Update bin name and description
                sub_bin_rows["bin"] = new_bin_name
                sub_bin_rows["bin_description"] = new_description

                # Add to new rows
                new_rows.append(sub_bin_rows)

                # Update start index for next iteration
                start_idx = end_idx

            # Remove the original bin from df_sorted
            df_sorted = df_sorted[~bin_mask]

    # Combine the original dataframe (with small bins) and the new split bins
    if new_rows:
        df_sorted = pd.concat([df_sorted] + new_rows)

    # Re-sort with the new bin names
    df_sorted = df_sorted.sort_values(by=["bin", "count"], ascending=[True, False])

    # Calculate the vertical positions for each row (bin)
    bins_with_topics = sorted(df_sorted["bin"].unique())
    num_rows = len(bins_with_topics)

    available_height = 100 - (2 * padding)
    row_height = available_height / num_rows

    # Calculate and assign y-positions (vertical positions)
    row_positions = {}
    for i, bin_name in enumerate(bins_with_topics):
        # Calculate row position (centered within its allocated space)
        row_pos = padding + i * row_height + (row_height / 2)
        row_positions[bin_name] = row_pos

    df_sorted["y"] = df_sorted["bin"].map(row_positions)

    # Center the bubbles in each row horizontally
    center_point = 50  # Middle of the chart (0-100 scale)
    for bin_name in bins_with_topics:
        # Get topics in this bin
        bin_mask = df_sorted["bin"] == bin_name
        num_topics_in_bin = bin_mask.sum()

        if num_topics_in_bin == 1:
            # If there's only one bubble, place it in the center
            df_sorted.loc[bin_mask, "x"] = center_point
        else:
            if num_topics_in_bin < max_items_per_row:
                # For fewer bubbles, add a little bit of spacing between them
                # Calculate the total width needed
                total_width = (num_topics_in_bin - 1) * 17.5  # 10 units between bubbles
                # Calculate starting position (to center the group)
                start_pos = center_point - (total_width / 2)
                # Assign positions
                positions = [start_pos + (i * 17.5) for i in range(num_topics_in_bin)]
                df_sorted.loc[bin_mask, "x"] = positions
            else:
                # For multiple bubbles, distribute them evenly around the center
                # Calculate the total width needed
                total_width = (num_topics_in_bin - 1) * 15  # 15 units between bubbles

                # Calculate starting position (to center the group)
                start_pos = center_point - (total_width / 2)

                # Assign positions
                positions = [start_pos + (i * 15) for i in range(num_topics_in_bin)]
                df_sorted.loc[bin_mask, "x"] = positions

    # Add original rank for reference
    df_sorted["size_rank"] = range(1, len(df_sorted) + 1)

    return df_sorted


# New function to update positions based on selected size metric
def update_bubble_positions(df: pd.DataFrame) -> pd.DataFrame:
    # For the main chart, we always use the binned layout
    return apply_binned_layout(df)


# Callback to update the bubble chart
@callback(
    Output("bubble-chart", "figure"),
    [
        Input("stored-data", "data"),
        Input("color-metric", "value"),
    ],
)
def update_bubble_chart(data, color_metric):
    if not data:
        return go.Figure()

    df = pd.DataFrame(data)

    # Update positions using binned layout
    df = update_bubble_positions(df)

    # Always use count for sizing
    size_values = df["count"]
    raw_sizes = df["count"]
    size_title = "Dialog Count"

    # Apply log scaling to the size values for better visualization
    # To make the smallest bubble bigger, increase the min_size value (currently 2.5).
    min_size = 1  # Minimum bubble size
    if size_values.max() > size_values.min():
        # Log-scale the sizes
        log_sizes = np.log1p(size_values)
        # Scale to a reasonable range for visualization
        # To make the biggest bubble smaller, reduce the multiplier (currently 50).
        size_values = (
            min_size
            + (log_sizes - log_sizes.min()) / (log_sizes.max() - log_sizes.min()) * 50
        )
    else:
        # If all values are the same, use a default size
        size_values = np.ones(len(df)) * 12.5

    # DEBUG: Print sizes of bubbles in the first and second bins
    bins = sorted(df["bin"].unique())
    if len(bins) >= 1:
        first_bin = bins[0]
        print(f"DEBUG - First bin '{first_bin}' bubble sizes:")
        first_bin_df = df[df["bin"] == first_bin]
        for idx, row in first_bin_df.iterrows():
            print(
                f"  Topic: {row['deduplicated_topic_name']}, Raw size: {row['count']}, Displayed size: {size_values[idx]}"
            )

    if len(bins) >= 2:
        second_bin = bins[1]
        print(f"DEBUG - Second bin '{second_bin}' bubble sizes:")
        second_bin_df = df[df["bin"] == second_bin]
        for idx, row in second_bin_df.iterrows():
            print(
                f"  Topic: {row['deduplicated_topic_name']}, Raw size: {row['count']}, Displayed size: {size_values[idx]}"
            )

    # Determine color based on selected metric
    if color_metric == "negative_rate":
        color_values = df["negative_rate"]
        # color_title = "Negative Sentiment (%)"
        color_title = "Negativity (%)"
        # color_scale = "RdBu"  # no ice, RdBu - og is Reds - matter is good too
        # color_scale = "Portland"
        # color_scale = "RdYlGn_r"
        # color_scale = "Teal"
        color_scale = "Teal"

    elif color_metric == "unresolved_rate":
        color_values = df["unresolved_rate"]
        color_title = "Unresolved (%)"
        # color_scale = "Burg"  # og is YlOrRd
        # color_scale = "Temps"
        # color_scale = "Armyrose"
        # color_scale = "YlOrRd"
        color_scale = "Teal"
    else:
        color_values = df["urgent_rate"]
        color_title = "Urgency (%)"
        # color_scale = "Magenta"  # og is Blues
        # color_scale = "Tealrose"
        # color_scale = "Portland"
        color_scale = "Teal"

    # Set all text positions to bottom for consistent layout
    text_positions = ["bottom center"] * len(df)

    # Create enhanced hover text that includes bin information
    hover_text = [
        f"Topic: {topic}<br>{size_title}: {raw:.1f}<br>{color_title}: {color:.1f}<br>Group: {bin_desc}"
        for topic, raw, color, bin_desc in zip(
            df["deduplicated_topic_name"],
            raw_sizes,
            color_values,
            df["bin_description"],
        )
    ]

    # Create bubble chart
    fig = px.scatter(
        df,
        x="x",
        y="y",
        size=size_values,
        color=color_values,
        # text="deduplicated_topic_name", # Remove text here
        hover_name="deduplicated_topic_name",
        hover_data={
            "x": False,
            "y": False,
            "bin_description": True,
        },
        size_max=42.5,  # Maximum size of the bubbles, change this to adjust the size
        color_continuous_scale=color_scale,
        custom_data=[
            "deduplicated_topic_name",
            "count",
            "negative_rate",
            "unresolved_rate",
            "urgent_rate",
            "bin_description",
        ],
    )

    # Update traces: Remove text related properties
    fig.update_traces(
        mode="markers",  # Remove '+text'
        marker=dict(sizemode="area", opacity=0.8, line=dict(width=1, color="white")),
        hovertemplate="%{hovertext}<extra></extra>",
        hovertext=hover_text,
    )

    # Create annotations for the bubbles
    annotations = []
    for i, row in df.iterrows():
        # Wrap text every 2 words
        words = row["deduplicated_topic_name"].split()
        wrapped_text = "<br>".join(
            [" ".join(words[i : i + 4]) for i in range(0, len(words), 4)]
        )

        # Calculate size for vertical offset (approximately based on the bubble size)
        # Add vertical offset based on bubble size to place text below the bubble
        marker_size = (
            size_values[i] / 20  # type: ignore  # FIXME: size_values[df.index.get_loc(i)] / 20
        )  # Adjust this divisor as needed to get proper spacing

        annotations.append(
            dict(
                x=row["x"],
                y=row["y"]
                + 0.125  # Adding this so in a row with maximum bubbles, the left one does not overlap with the bin label
                + marker_size,  # Add vertical offset to position text below the bubble
                text=wrapped_text,
                showarrow=False,
                textangle=0,
                font=dict(
                    size=10,
                    # size=8,
                    color="var(--foreground)",
                    family="Arial, sans-serif",
                    weight="bold",
                ),
                xanchor="center",
                yanchor="top",  # Anchor to top of text box so it hangs below the bubble
                bgcolor="rgba(255,255,255,0.7)",  # Add semi-transparent background for better readability
                bordercolor="rgba(0,0,0,0.1)",  # Add a subtle border color
                borderwidth=1,
                borderpad=1,
                # TODO: Radius for rounded corners
            )
        )

    # Add bin labels and separator lines
    unique_bins = sorted(df["bin"].unique())
    bin_y_positions = [
        df[df["bin"] == bin_name]["y"].mean() for bin_name in unique_bins
    ]

    # Dynamically extract bin descriptions
    bin_descriptions = df.set_index("bin")["bin_description"].to_dict()

    for bin_name, bin_y in zip(unique_bins, bin_y_positions):
        # Add horizontal line
        fig.add_shape(
            type="line",
            x0=0,
            y0=bin_y,
            x1=100,
            y1=bin_y,
            line=dict(color="rgba(0,0,0,0.1)", width=1, dash="dot"),
            layer="below",
        )

    # Add subtle lines for each bin and bin labels
    for bin_name, bin_y in zip(unique_bins, bin_y_positions):
        # Add horizontal line
        fig.add_shape(
            type="line",
            x0=0,
            y0=bin_y,
            x1=100,
            y1=bin_y,
            line=dict(color="rgba(0,0,0,0.1)", width=1, dash="dot"),
            layer="below",
        )

        # Add bin label annotation
        annotations.append(
            dict(
                x=0,  # Position the label on the left side
                y=bin_y,
                xref="x",
                yref="y",
                text=bin_descriptions[bin_name],
                showarrow=False,
                font=dict(size=8.25, color="var(--muted-foreground)"),
                align="left",
                xanchor="left",
                yanchor="middle",
                bgcolor="rgba(255,255,255,0.7)",
                borderpad=1,
            )
        )

    fig.update_layout(
        title=None,
        xaxis=dict(
            showgrid=False,
            zeroline=False,
            showticklabels=False,
            title=None,
            range=[0, 100],
        ),
        yaxis=dict(
            showgrid=False,
            zeroline=False,
            showticklabels=False,
            title=None,
            range=[0, 100],
            autorange="reversed",  # Keep largest at top
        ),
        hovermode="closest",
        margin=dict(l=0, r=0, t=10, b=10),
        coloraxis_colorbar=dict(
            title=color_title,
            title_font=dict(size=9),
            tickfont=dict(size=8),
            thickness=10,
            len=0.6,
            yanchor="middle",
            y=0.5,
            xpad=0,
        ),
        legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
        paper_bgcolor="rgba(0,0,0,0)",
        plot_bgcolor="rgba(0,0,0,0)",
        hoverlabel=dict(bgcolor="white", font_size=12, font_family="Inter"),
        annotations=annotations,  # Add bin labels as annotations
    )

    return fig


# Update the update_topic_details callback to use grayscale colors for tags based on frequency
@callback(
    [
        Output("topic-title", "children"),
        Output("topic-metadata", "children"),
        Output("topic-metrics", "children"),
        Output("important-tags", "children"),
        Output("sample-dialogs", "children"),
        Output("no-topic-selected", "style"),
    ],
    [Input("bubble-chart", "hoverData"), Input("bubble-chart", "clickData")],
    [State("stored-data", "data"), State("upload-data", "contents")],
)
def update_topic_details(hover_data, click_data, stored_data, file_contents):
    # Determine which data to use (prioritize click over hover)
    hover_info = hover_data or click_data

    if not hover_info or not stored_data or not file_contents:
        return "", [], [], "", [], {"display": "flex"}

    # Extract topic name from the hover data
    topic_name = hover_info["points"][0]["customdata"][0]

    # Get stored data for this topic
    df_stored = pd.DataFrame(stored_data)
    topic_data = df_stored[df_stored["deduplicated_topic_name"] == topic_name].iloc[0]

    # Get original data to sample conversations
    content_type, content_string = file_contents.split(",")
    decoded = base64.b64decode(content_string)

    if (
        content_type
        == "data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64"
    ):
        df_full = pd.read_excel(io.BytesIO(decoded))
    else:  # Assume CSV
        df_full = pd.read_csv(io.StringIO(decoded.decode("utf-8")))

    # Filter to this topic
    topic_conversations = df_full[df_full["deduplicated_topic_name"] == topic_name]

    # Create the title
    title = html.Div([html.Span(topic_name)])

    # Create metadata items
    metadata_items = [
        html.Div(
            [
                html.I(className="fas fa-comments metadata-icon"),
                html.Span(f"{int(topic_data['count'])} dialogs"),
            ],
            className="metadata-item",
        ),
    ]

    # Create metrics boxes
    metrics_boxes = [
        html.Div(
            [
                html.Div(f"{topic_data['negative_rate']}%", className="metric-value"),
                html.Div("Negative Sentiment", className="metric-label"),
            ],
            className="metric-box negative",
        ),
        html.Div(
            [
                html.Div(f"{topic_data['unresolved_rate']}%", className="metric-value"),
                html.Div("Unresolved", className="metric-label"),
            ],
            className="metric-box unresolved",
        ),
        html.Div(
            [
                html.Div(f"{topic_data['urgent_rate']}%", className="metric-value"),
                html.Div("Urgent", className="metric-label"),
            ],
            className="metric-box urgent",
        ),
    ]

    # New: Extract and process consolidated_tags with improved styling
    tags_list = []
    for _, row in topic_conversations.iterrows():
        tags_str = row.get("consolidated_tags", "")
        if pd.notna(tags_str):
            tags = [tag.strip() for tag in tags_str.split(",") if tag.strip()]
            tags_list.extend(tags)

    # Count tag frequencies for better insight
    tag_counts = {}
    for tag in tags_list:
        tag_counts[tag] = tag_counts.get(tag, 0) + 1

    # Sort by frequency (most common first) and then alphabetically for ties
    sorted_tags = sorted(tag_counts.items(), key=lambda x: (-x[1], x[0]))

    # Keep only the top K tags
    TOP_K = 15
    sorted_tags = sorted_tags[:TOP_K]

    if sorted_tags:
        # Create beautifully styled tags with count indicators and consistent color
        tags_output = html.Div(
            [
                html.Div(
                    [
                        html.I(className="fas fa-tag topic-tag-icon"),
                        html.Span(f"{tag} ({count})"),
                    ],
                    className="topic-tag",
                )
                for tag, count in sorted_tags
            ],
            className="tags-container",
        )
    else:
        tags_output = html.Div(
            [
                html.I(className="fas fa-info-circle", style={"marginRight": "5px"}),
                "No tags found for this topic",
            ],
            className="no-tags-message",
        )

    # Sample up to 5 random dialogs
    sample_size = min(5, len(topic_conversations))
    if sample_size > 0:
        sample_indices = random.sample(range(len(topic_conversations)), sample_size)
        samples = topic_conversations.iloc[sample_indices]

        dialog_items = []
        for _, row in samples.iterrows():
            # Create dialog item with tags
            sentiment_tag = html.Span(
                row["Sentiment"], className="dialog-tag tag-sentiment"
            )
            resolution_tag = html.Span(
                row["Resolution"], className="dialog-tag tag-resolution"
            )
            urgency_tag = html.Span(row["Urgency"], className="dialog-tag tag-urgency")

            # Add Chat ID tag if 'id' column exists
            chat_id_tag = None
            if "id" in row:
                chat_id_tag = html.Span(
                    f"Chat ID: {row['id']}", className="dialog-tag tag-chat-id"
                )

            # Compile all tags, including the new Chat ID tag if available
            tags = [sentiment_tag, resolution_tag, urgency_tag]
            if chat_id_tag:
                tags.append(chat_id_tag)

            dialog_items.append(
                html.Div(
                    [
                        html.Div(row["Summary"], className="dialog-summary"),
                        html.Div(
                            tags,
                            className="dialog-metadata",
                        ),
                    ],
                    className="dialog-item",
                )
            )

        sample_dialogs = dialog_items
    else:
        sample_dialogs = [
            html.Div(
                "No sample dialogs available for this topic.",
                style={"color": "var(--muted-foreground)"},
            )
        ]

    return (
        title,
        metadata_items,
        metrics_boxes,
        tags_output,
        sample_dialogs,
        {"display": "none"},
    )


if __name__ == "__main__":
    app.run_server(debug=False)