File size: 1,618 Bytes
0667c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from vietocr.model.backbone.cnn import CNN
from vietocr.model.seqmodel.transformer import LanguageTransformer
from vietocr.model.seqmodel.seq2seq import Seq2Seq
from vietocr.model.seqmodel.convseq2seq import ConvSeq2Seq
from torch import nn

class VietOCR(nn.Module):
    def __init__(self, vocab_size,
                 backbone,
                 cnn_args, 
                 transformer_args, seq_modeling='transformer'):
        
        super(VietOCR, self).__init__()
        
        self.cnn = CNN(backbone, **cnn_args)
        self.seq_modeling = seq_modeling

        if seq_modeling == 'transformer':
            self.transformer = LanguageTransformer(vocab_size, **transformer_args)
        elif seq_modeling == 'seq2seq':
            self.transformer = Seq2Seq(vocab_size, **transformer_args)
        elif seq_modeling == 'convseq2seq':
            self.transformer = ConvSeq2Seq(vocab_size, **transformer_args)
        else:
            raise('Not Support Seq Model')

    def forward(self, img, tgt_input, tgt_key_padding_mask):
        """
        Shape:
            - img: (N, C, H, W)
            - tgt_input: (T, N)
            - tgt_key_padding_mask: (N, T)
            - output: b t v
        """
        src = self.cnn(img)

        if self.seq_modeling == 'transformer':
            outputs = self.transformer(src, tgt_input, tgt_key_padding_mask=tgt_key_padding_mask)
        elif self.seq_modeling == 'seq2seq':
            outputs = self.transformer(src, tgt_input)
        elif self.seq_modeling == 'convseq2seq': 
            outputs = self.transformer(src, tgt_input)
        return outputs