|
import os |
|
os.environ['USE_TORCH'] = '1' |
|
|
|
from doctr.io import DocumentFile |
|
from doctr.models import ocr_predictor |
|
import gradio as gr |
|
from PIL import Image |
|
import base64 |
|
from utils import HocrParser |
|
import google.generativeai as genai |
|
|
|
api_key = 'AIzaSyB4lQJM89q1EQDNtKoh8E5wf-ks0E6Q_Uc' |
|
genai.configure(api_key=api_key) |
|
geminiModel = genai.GenerativeModel(model_name='gemini-2.0-flash') |
|
predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_vgg16_bn',pretrained=True) |
|
predictor.reco_predictor.model.cfg['vocab']='0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!”#$%&’()*+,-./:;<=>?@[]^_`{|}~°£€¥¢฿áàảạãăắằẳẵặâấầẩẫậéèẻẽẹêếềểễệóòỏõọôốồổộỗơớờởợỡúùủũụưứừửữựiíìỉĩịýỳỷỹỵÁÀẢẠÃĂẮẰẲẴẶÂẤẦẨẪẬÉÈẺẼẸÊẾỀỂỄỆÓÒỎÕỌÔỐỒỔỘỖƠỚỜỞỢỠÚÙỦŨỤƯỨỪỬỮỰIÍÌỈĨỊÝỲỶỸỴ' |
|
title="DocTR OCR (PDL Demo)" |
|
description="Upload an image to get the OCR results !" |
|
|
|
def greet(img): |
|
img.save("out.jpg") |
|
doc = DocumentFile.from_images("out.jpg") |
|
output=predictor(doc) |
|
|
|
xml_outputs = output.export_as_xml() |
|
parser = HocrParser() |
|
|
|
res="" |
|
for obj in output.pages: |
|
for obj1 in obj.blocks: |
|
for obj2 in obj1.lines: |
|
for obj3 in obj2.words: |
|
res=res + " " + obj3.value |
|
res=res + "\n" |
|
res=res + "\n" |
|
|
|
prompt = "the input text in vietnamese, please add accend and take this peace of information and give all the information in point wise better format also give some recomendation related to them: " + res |
|
|
|
response = geminiModel.generate_content(prompt) |
|
print(response) |
|
res = response.text |
|
_output_name = "RESULT_OCR.txt" |
|
_output_name_pdf="RESULT_OCR.pdf" |
|
|
|
open(_output_name, 'w').close() |
|
with open(_output_name, "w", encoding="utf-8", errors="ignore") as f: |
|
f.write(res) |
|
print("Writing into file") |
|
|
|
base64_encoded_pdfs = list() |
|
for i, (xml, img) in enumerate(zip(xml_outputs, doc)): |
|
xml_element_tree = xml[1] |
|
parser.export_pdfa(_output_name_pdf, |
|
hocr=xml_element_tree, image=img) |
|
with open(_output_name_pdf, 'rb') as f: |
|
base64_encoded_pdfs.append(base64.b64encode(f.read())) |
|
return res, _output_name, _output_name_pdf |
|
|
|
demo = gr.Interface(fn=greet, |
|
inputs=gr.Image(type="pil"), |
|
outputs=["text", "file","file"], |
|
title=title, |
|
description=description |
|
) |
|
|
|
demo.launch(debug=True) |