File size: 5,731 Bytes
0667c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

class Encoder(nn.Module):
    def __init__(self, emb_dim, enc_hid_dim, dec_hid_dim, dropout):
        super().__init__()
                
        self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)
        self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, src):
        """
        src: src_len x batch_size x img_channel
        outputs: src_len x batch_size x hid_dim 
        hidden: batch_size x hid_dim
        """

        embedded = self.dropout(src)
        
        outputs, hidden = self.rnn(embedded)
                                 
        hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))
        
        return outputs, hidden

class Attention(nn.Module):
    def __init__(self, enc_hid_dim, dec_hid_dim):
        super().__init__()
        
        self.attn = nn.Linear((enc_hid_dim * 2) + dec_hid_dim, dec_hid_dim)
        self.v = nn.Linear(dec_hid_dim, 1, bias = False)
        
    def forward(self, hidden, encoder_outputs):
        """
        hidden: batch_size x hid_dim
        encoder_outputs: src_len x batch_size x hid_dim,
        outputs: batch_size x src_len
        """
        
        batch_size = encoder_outputs.shape[1]
        src_len = encoder_outputs.shape[0]
        
        hidden = hidden.unsqueeze(1).repeat(1, src_len, 1)
  
        encoder_outputs = encoder_outputs.permute(1, 0, 2)
        
        energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim = 2))) 
        
        attention = self.v(energy).squeeze(2)
        
        return F.softmax(attention, dim = 1)

class Decoder(nn.Module):
    def __init__(self, output_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout, attention):
        super().__init__()

        self.output_dim = output_dim
        self.attention = attention
        
        self.embedding = nn.Embedding(output_dim, emb_dim)
        self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)
        self.fc_out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, input, hidden, encoder_outputs):
        """
        inputs: batch_size
        hidden: batch_size x hid_dim
        encoder_outputs: src_len x batch_size x hid_dim
        """
             
        input = input.unsqueeze(0)
        
        embedded = self.dropout(self.embedding(input))
        
        a = self.attention(hidden, encoder_outputs)
                
        a = a.unsqueeze(1)
        
        encoder_outputs = encoder_outputs.permute(1, 0, 2)
        
        weighted = torch.bmm(a, encoder_outputs)
        
        weighted = weighted.permute(1, 0, 2)
        
        rnn_input = torch.cat((embedded, weighted), dim = 2)
        
        output, hidden = self.rnn(rnn_input, hidden.unsqueeze(0))
        
        assert (output == hidden).all()
        
        embedded = embedded.squeeze(0)
        output = output.squeeze(0)
        weighted = weighted.squeeze(0)
        
        prediction = self.fc_out(torch.cat((output, weighted, embedded), dim = 1))
        
        return prediction, hidden.squeeze(0), a.squeeze(1)

class Seq2Seq(nn.Module):
    def __init__(self, vocab_size, encoder_hidden, decoder_hidden, img_channel, decoder_embedded, dropout=0.1):
        super().__init__()
        
        attn = Attention(encoder_hidden, decoder_hidden)
        
        self.encoder = Encoder(img_channel, encoder_hidden, decoder_hidden, dropout)
        self.decoder = Decoder(vocab_size, decoder_embedded, encoder_hidden, decoder_hidden, dropout, attn)
        
    def forward_encoder(self, src):       
        """
        src: timestep x batch_size x channel
        hidden: batch_size x hid_dim
        encoder_outputs: src_len x batch_size x hid_dim
        """

        encoder_outputs, hidden = self.encoder(src)

        return (hidden, encoder_outputs)

    def forward_decoder(self, tgt, memory):
        """
        tgt: timestep x batch_size 
        hidden: batch_size x hid_dim
        encouder: src_len x batch_size x hid_dim
        output: batch_size x 1 x vocab_size
        """
        
        tgt = tgt[-1]
        hidden, encoder_outputs = memory
        output, hidden, _ = self.decoder(tgt, hidden, encoder_outputs)
        output = output.unsqueeze(1)
        
        return output, (hidden, encoder_outputs)

    def forward(self, src, trg):
        """
        src: time_step x batch_size
        trg: time_step x batch_size
        outputs: batch_size x time_step x vocab_size
        """

        batch_size = src.shape[1]
        trg_len = trg.shape[0]
        trg_vocab_size = self.decoder.output_dim
        device = src.device

        outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(device)
        encoder_outputs, hidden = self.encoder(src)
                
        for t in range(trg_len):
            input = trg[t] 
            output, hidden, _ = self.decoder(input, hidden, encoder_outputs)
            
            outputs[t] = output
            
        outputs = outputs.transpose(0, 1).contiguous()

        return outputs

    def expand_memory(self, memory, beam_size):
        hidden, encoder_outputs = memory
        hidden = hidden.repeat(beam_size, 1)
        encoder_outputs = encoder_outputs.repeat(1, beam_size, 1)

        return (hidden, encoder_outputs)
    
    def get_memory(self, memory, i):
        hidden, encoder_outputs = memory
        hidden = hidden[[i]]
        encoder_outputs = encoder_outputs[:, [i],:]

        return (hidden, encoder_outputs)