File size: 5,311 Bytes
0667c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
from torch import nn

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = self._conv3x3(inplanes, planes)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = self._conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def _conv3x3(self, in_planes, out_planes, stride=1):
        "3x3 convolution with padding"
        return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                         padding=1, bias=False)

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)

        return out
    
class ResNet(nn.Module):

    def __init__(self, input_channel, output_channel, block, layers):
        super(ResNet, self).__init__()

        self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel]

        self.inplanes = int(output_channel / 8)
        self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16),
                                 kernel_size=3, stride=1, padding=1, bias=False)
        self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16))
        self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes,
                                 kernel_size=3, stride=1, padding=1, bias=False)
        self.bn0_2 = nn.BatchNorm2d(self.inplanes)
        self.relu = nn.ReLU(inplace=True)

        self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0])
        self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[
                               0], kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(self.output_channel_block[0])

        self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1)
        self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[
                               1], kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(self.output_channel_block[1])

        self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1))
        self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1)
        self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[
                               2], kernel_size=3, stride=1, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.output_channel_block[2])

        self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1)
        self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
                                 3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False)
        self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3])
        self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
                                 3], kernel_size=2, stride=1, padding=0, bias=False)
        self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3])

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv0_1(x)
        x = self.bn0_1(x)
        x = self.relu(x)
        x = self.conv0_2(x)
        x = self.bn0_2(x)
        x = self.relu(x)

        x = self.maxpool1(x)
        x = self.layer1(x)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.maxpool2(x)
        x = self.layer2(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)

        x = self.maxpool3(x)
        x = self.layer3(x)
        x = self.conv3(x)
        x = self.bn3(x)
        x = self.relu(x)

        x = self.layer4(x)
        x = self.conv4_1(x)
        x = self.bn4_1(x)
        x = self.relu(x)
        x = self.conv4_2(x)
        x = self.bn4_2(x)
        conv = self.relu(x)
        
        conv = conv.transpose(-1, -2)
        conv = conv.flatten(2)
        conv = conv.permute(-1, 0, 1)

        return conv

def Resnet50(ss, hidden):
    return ResNet(3, hidden, BasicBlock, [1, 2, 5, 3])