ai: Switch to production code.
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ title: JARVIS AI
|
|
3 |
colorFrom: yellow
|
4 |
colorTo: purple
|
5 |
sdk: gradio
|
6 |
-
sdk_version: 5.27.
|
7 |
app_file: jarvis.py
|
8 |
pinned: true
|
9 |
short_description: Inspired by Iron Man movies.
|
|
|
3 |
colorFrom: yellow
|
4 |
colorTo: purple
|
5 |
sdk: gradio
|
6 |
+
sdk_version: 5.27.1
|
7 |
app_file: jarvis.py
|
8 |
pinned: true
|
9 |
short_description: Inspired by Iron Man movies.
|
ai
CHANGED
@@ -3,12 +3,12 @@
|
|
3 |
# SPDX-FileCopyrightText: Hadad <[email protected]>
|
4 |
# SPDX-License-Identifier: Apache-2.0
|
5 |
#
|
|
|
6 |
import sys
|
7 |
|
8 |
from gradio_client import Client
|
9 |
from rich.console import Console
|
10 |
from rich.markdown import Markdown
|
11 |
-
from rich.panel import Panel
|
12 |
|
13 |
console = Console()
|
14 |
jarvis = Client("hadadrjt/ai")
|
|
|
3 |
# SPDX-FileCopyrightText: Hadad <[email protected]>
|
4 |
# SPDX-License-Identifier: Apache-2.0
|
5 |
#
|
6 |
+
|
7 |
import sys
|
8 |
|
9 |
from gradio_client import Client
|
10 |
from rich.console import Console
|
11 |
from rich.markdown import Markdown
|
|
|
12 |
|
13 |
console = Console()
|
14 |
jarvis = Client("hadadrjt/ai")
|
jarvis.py
CHANGED
@@ -4,81 +4,126 @@
|
|
4 |
#
|
5 |
|
6 |
import asyncio
|
7 |
-
import codecs
|
8 |
-
import docx
|
9 |
import gradio as gr
|
10 |
import httpx
|
11 |
import json
|
12 |
import os
|
13 |
-
import pandas as pd
|
14 |
-
import pdfplumber
|
15 |
-
import pytesseract
|
16 |
import random
|
17 |
import requests
|
18 |
import threading
|
19 |
import uuid
|
20 |
-
import zipfile
|
21 |
import io
|
22 |
|
23 |
-
from PIL import Image
|
24 |
from pathlib import Path
|
25 |
-
from pptx import Presentation
|
26 |
-
from openpyxl import load_workbook
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
JARVIS_INIT = json.loads(os.getenv("HELLO", "[]"))
|
31 |
|
|
|
32 |
DEEP_SEARCH_PROVIDER_HOST = os.getenv("DEEP_SEARCH_PROVIDER_HOST")
|
33 |
DEEP_SEARCH_PROVIDER_KEY = os.getenv('DEEP_SEARCH_PROVIDER_KEY')
|
34 |
DEEP_SEARCH_INSTRUCTIONS = os.getenv("DEEP_SEARCH_INSTRUCTIONS")
|
35 |
|
|
|
36 |
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
|
37 |
INTERNAL_AI_INSTRUCTIONS = os.getenv("INTERNAL_TRAINING_DATA")
|
38 |
|
|
|
39 |
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}"))
|
40 |
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM")
|
41 |
|
|
|
42 |
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h]
|
43 |
|
|
|
44 |
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k]
|
45 |
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
|
46 |
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}
|
47 |
|
48 |
-
|
|
|
49 |
|
|
|
50 |
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 10)}
|
51 |
-
|
52 |
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)}
|
53 |
|
|
|
54 |
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
|
55 |
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
|
56 |
MODEL_CHOICES = list(MODEL_MAPPING.values())
|
57 |
|
|
|
58 |
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
|
59 |
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None
|
60 |
|
|
|
61 |
META_TAGS = os.getenv("META_TAGS")
|
62 |
|
|
|
63 |
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))
|
64 |
|
|
|
|
|
|
|
|
|
65 |
class SessionWithID(requests.Session):
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
super().__init__()
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
def create_session():
|
|
|
|
|
|
|
|
|
73 |
return SessionWithID()
|
74 |
|
75 |
def ensure_stop_event(sess):
|
|
|
|
|
|
|
|
|
76 |
if not hasattr(sess, "stop_event"):
|
77 |
sess.stop_event = asyncio.Event()
|
78 |
if not hasattr(sess, "cancel_token"):
|
79 |
sess.cancel_token = {"cancelled": False}
|
80 |
|
81 |
def marked_item(item, marked, attempts):
|
|
|
|
|
|
|
|
|
|
|
82 |
marked.add(item)
|
83 |
attempts[item] = attempts.get(item, 0) + 1
|
84 |
if attempts[item] >= 3:
|
@@ -88,15 +133,30 @@ def marked_item(item, marked, attempts):
|
|
88 |
threading.Timer(300, remove).start()
|
89 |
|
90 |
def get_model_key(display):
|
|
|
|
|
|
|
|
|
91 |
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY)
|
92 |
|
|
|
|
|
|
|
|
|
93 |
def extract_pdf_content(fp):
|
|
|
|
|
|
|
|
|
|
|
94 |
content = ""
|
95 |
try:
|
96 |
with pdfplumber.open(fp) as pdf:
|
97 |
for page in pdf.pages:
|
|
|
98 |
text = page.extract_text() or ""
|
99 |
content += text + "\n"
|
|
|
100 |
if page.images:
|
101 |
img_obj = page.to_image(resolution=300)
|
102 |
for img in page.images:
|
@@ -105,6 +165,7 @@ def extract_pdf_content(fp):
|
|
105 |
ocr_text = pytesseract.image_to_string(cropped)
|
106 |
if ocr_text.strip():
|
107 |
content += ocr_text + "\n"
|
|
|
108 |
tables = page.extract_tables()
|
109 |
for table in tables:
|
110 |
for row in table:
|
@@ -112,19 +173,26 @@ def extract_pdf_content(fp):
|
|
112 |
if cells:
|
113 |
content += "\t".join(cells) + "\n"
|
114 |
except Exception as e:
|
115 |
-
content += f"{fp}: {e}"
|
116 |
return content.strip()
|
117 |
|
118 |
def extract_docx_content(fp):
|
|
|
|
|
|
|
|
|
119 |
content = ""
|
120 |
try:
|
121 |
doc = docx.Document(fp)
|
|
|
122 |
for para in doc.paragraphs:
|
123 |
content += para.text + "\n"
|
|
|
124 |
for table in doc.tables:
|
125 |
for row in table.rows:
|
126 |
cells = [cell.text for cell in row.cells]
|
127 |
content += "\t".join(cells) + "\n"
|
|
|
128 |
with zipfile.ZipFile(fp) as z:
|
129 |
for file in z.namelist():
|
130 |
if file.startswith("word/media/"):
|
@@ -134,51 +202,66 @@ def extract_docx_content(fp):
|
|
134 |
ocr_text = pytesseract.image_to_string(img)
|
135 |
if ocr_text.strip():
|
136 |
content += ocr_text + "\n"
|
137 |
-
except:
|
|
|
138 |
pass
|
139 |
except Exception as e:
|
140 |
-
content += f"{fp}: {e}"
|
141 |
return content.strip()
|
142 |
|
143 |
def extract_excel_content(fp):
|
|
|
|
|
|
|
|
|
|
|
144 |
content = ""
|
145 |
try:
|
|
|
146 |
sheets = pd.read_excel(fp, sheet_name=None)
|
147 |
for name, df in sheets.items():
|
148 |
content += f"Sheet: {name}\n"
|
149 |
content += df.to_csv(index=False) + "\n"
|
|
|
150 |
wb = load_workbook(fp, data_only=True)
|
151 |
if wb._images:
|
152 |
for image in wb._images:
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
ocr_text
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
pass
|
162 |
except Exception as e:
|
163 |
-
content += f"{fp}: {e}"
|
164 |
return content.strip()
|
165 |
|
166 |
def extract_pptx_content(fp):
|
|
|
|
|
|
|
|
|
|
|
167 |
content = ""
|
168 |
try:
|
169 |
prs = Presentation(fp)
|
170 |
for slide in prs.slides:
|
171 |
for shape in slide.shapes:
|
|
|
172 |
if hasattr(shape, "text") and shape.text:
|
173 |
content += shape.text + "\n"
|
|
|
174 |
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image:
|
175 |
try:
|
176 |
img = Image.open(io.BytesIO(shape.image.blob))
|
177 |
ocr_text = pytesseract.image_to_string(img)
|
178 |
if ocr_text.strip():
|
179 |
content += ocr_text + "\n"
|
180 |
-
except:
|
181 |
pass
|
|
|
182 |
for shape in slide.shapes:
|
183 |
if shape.has_table:
|
184 |
table = shape.table
|
@@ -186,10 +269,14 @@ def extract_pptx_content(fp):
|
|
186 |
cells = [cell.text for cell in row.cells]
|
187 |
content += "\t".join(cells) + "\n"
|
188 |
except Exception as e:
|
189 |
-
content += f"{fp}: {e}"
|
190 |
return content.strip()
|
191 |
|
192 |
def extract_file_content(fp):
|
|
|
|
|
|
|
|
|
193 |
ext = Path(fp).suffix.lower()
|
194 |
if ext == ".pdf":
|
195 |
return extract_pdf_content(fp)
|
@@ -203,12 +290,21 @@ def extract_file_content(fp):
|
|
203 |
try:
|
204 |
return Path(fp).read_text(encoding="utf-8").strip()
|
205 |
except Exception as e:
|
206 |
-
return f"{fp}: {e}"
|
|
|
|
|
|
|
|
|
207 |
|
208 |
async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_event, cancel_token):
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
210 |
try:
|
211 |
-
async with httpx.AsyncClient(timeout=
|
212 |
async with client.stream("POST", host, json={**{"model": model, "messages": msgs, "session_id": sid, "stream": True}, **cfg}, headers={"Authorization": f"Bearer {key}"}) as response:
|
213 |
if response.status_code in LINUX_SERVER_ERRORS:
|
214 |
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
|
@@ -227,30 +323,41 @@ async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_eve
|
|
227 |
if isinstance(j, dict) and j.get("choices"):
|
228 |
for ch in j["choices"]:
|
229 |
delta = ch.get("delta", {})
|
|
|
230 |
if "reasoning" in delta and delta["reasoning"]:
|
231 |
decoded = delta["reasoning"].encode('utf-8').decode('unicode_escape')
|
232 |
yield ("reasoning", decoded)
|
|
|
233 |
if "content" in delta and delta["content"]:
|
234 |
yield ("content", delta["content"])
|
235 |
-
except:
|
|
|
236 |
continue
|
237 |
-
except:
|
|
|
238 |
continue
|
239 |
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
|
240 |
return
|
241 |
|
242 |
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt, deep_search):
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
ensure_stop_event(sess)
|
244 |
sess.stop_event.clear()
|
245 |
sess.cancel_token["cancelled"] = False
|
246 |
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
|
247 |
-
yield ("content", RESPONSES["RESPONSE_3"])
|
248 |
return
|
249 |
if not hasattr(sess, "session_id") or not sess.session_id:
|
250 |
sess.session_id = str(uuid.uuid4())
|
251 |
model_key = get_model_key(model_display)
|
252 |
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG)
|
253 |
msgs = []
|
|
|
254 |
if deep_search and model_display == MODEL_CHOICES[0]:
|
255 |
msgs.append({"role": "system", "content": DEEP_SEARCH_INSTRUCTIONS})
|
256 |
try:
|
@@ -273,17 +380,25 @@ async def chat_with_model_async(history, user_input, model_display, sess, custom
|
|
273 |
r = await client.post(DEEP_SEARCH_PROVIDER_HOST, headers={"Authorization": f"Bearer {DEEP_SEARCH_PROVIDER_KEY}"}, json=payload)
|
274 |
sr_json = r.json()
|
275 |
msgs.append({"role": "system", "content": json.dumps(sr_json)})
|
276 |
-
except:
|
|
|
277 |
pass
|
278 |
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
|
279 |
elif model_display == MODEL_CHOICES[0]:
|
|
|
280 |
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
|
281 |
else:
|
|
|
282 |
msgs.append({"role": "system", "content": custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)})
|
283 |
-
|
|
|
|
|
|
|
284 |
msgs.append({"role": "user", "content": user_input})
|
|
|
285 |
candidates = [(h, k) for h in LINUX_SERVER_HOSTS for k in LINUX_SERVER_PROVIDER_KEYS]
|
286 |
random.shuffle(candidates)
|
|
|
287 |
for h, k in candidates:
|
288 |
stream_gen = fetch_response_stream_async(h, k, model_key, msgs, cfg, sess.session_id, sess.stop_event, sess.cancel_token)
|
289 |
got_responses = False
|
@@ -294,25 +409,44 @@ async def chat_with_model_async(history, user_input, model_display, sess, custom
|
|
294 |
yield chunk
|
295 |
if got_responses:
|
296 |
return
|
|
|
297 |
yield ("content", RESPONSES["RESPONSE_2"])
|
298 |
|
|
|
|
|
|
|
|
|
299 |
async def respond_async(multi, history, model_display, sess, custom_prompt, deep_search):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
ensure_stop_event(sess)
|
301 |
sess.stop_event.clear()
|
302 |
sess.cancel_token["cancelled"] = False
|
|
|
303 |
msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])}
|
|
|
304 |
if not msg_input["text"] and not msg_input["files"]:
|
305 |
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
|
306 |
return
|
|
|
307 |
inp = ""
|
308 |
for f in msg_input["files"]:
|
|
|
309 |
fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f
|
310 |
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n"
|
|
|
311 |
if msg_input["text"]:
|
312 |
inp += msg_input["text"]
|
|
|
313 |
history.append([inp, RESPONSES["RESPONSE_8"]])
|
314 |
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
|
315 |
queue = asyncio.Queue()
|
|
|
316 |
async def background():
|
317 |
reasoning = ""
|
318 |
responses = ""
|
@@ -331,7 +465,7 @@ async def respond_async(multi, history, model_display, sess, custom_prompt, deep
|
|
331 |
content_started = True
|
332 |
ignore_reasoning = True
|
333 |
responses = chunk
|
334 |
-
await queue.put(("reasoning", ""))
|
335 |
await queue.put(("replace", responses))
|
336 |
else:
|
337 |
responses += chunk
|
@@ -340,35 +474,55 @@ async def respond_async(multi, history, model_display, sess, custom_prompt, deep
|
|
340 |
return responses
|
341 |
bg_task = asyncio.create_task(background())
|
342 |
stop_task = asyncio.create_task(sess.stop_event.wait())
|
|
|
343 |
try:
|
344 |
while True:
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
if result is None:
|
355 |
raise StopAsyncIteration
|
356 |
action, text = result
|
|
|
357 |
history[-1][1] = text
|
358 |
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
|
359 |
except StopAsyncIteration:
|
360 |
pass
|
361 |
finally:
|
362 |
-
|
363 |
-
|
|
|
364 |
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
|
365 |
|
366 |
def change_model(new):
|
|
|
|
|
|
|
|
|
|
|
367 |
visible = new == MODEL_CHOICES[0]
|
368 |
-
|
369 |
-
return [], create_session(), new,
|
370 |
|
371 |
def stop_response(history, sess):
|
|
|
|
|
|
|
|
|
372 |
ensure_stop_event(sess)
|
373 |
sess.stop_event.set()
|
374 |
sess.cancel_token["cancelled"] = True
|
@@ -376,24 +530,36 @@ def stop_response(history, sess):
|
|
376 |
history[-1][1] = RESPONSES["RESPONSE_1"]
|
377 |
return history, None, create_session()
|
378 |
|
|
|
|
|
|
|
|
|
379 |
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
|
380 |
user_history = gr.State([])
|
381 |
user_session = gr.State(create_session())
|
382 |
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
|
383 |
J_A_R_V_I_S = gr.State("")
|
|
|
384 |
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"], examples=JARVIS_INIT)
|
|
|
385 |
deep_search = gr.Checkbox(label=AI_TYPES["AI_TYPE_8"], value=False, info=AI_TYPES["AI_TYPE_9"], visible=True)
|
|
|
386 |
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
|
387 |
-
|
388 |
-
|
|
|
389 |
model_radio.change(fn=change_model, inputs=[model_radio], outputs=[user_history, user_session, selected_model, J_A_R_V_I_S, deep_search, deep_search])
|
390 |
-
|
391 |
-
|
392 |
chatbot.example_select(fn=on_example_select, inputs=[], outputs=[msg]).then(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session])
|
393 |
-
|
394 |
-
|
395 |
deep_search.change(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
|
396 |
chatbot.clear(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
|
|
|
397 |
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
|
|
|
398 |
msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session])
|
|
|
|
|
399 |
jarvis.queue(default_concurrency_limit=2).launch(max_file_size="1mb")
|
|
|
4 |
#
|
5 |
|
6 |
import asyncio
|
7 |
+
import codecs # Reasoning
|
8 |
+
import docx # Microsoft Word
|
9 |
import gradio as gr
|
10 |
import httpx
|
11 |
import json
|
12 |
import os
|
13 |
+
import pandas as pd # Microsoft Excel
|
14 |
+
import pdfplumber # PDF
|
15 |
+
import pytesseract # OCR
|
16 |
import random
|
17 |
import requests
|
18 |
import threading
|
19 |
import uuid
|
20 |
+
import zipfile # Microsoft Word
|
21 |
import io
|
22 |
|
23 |
+
from PIL import Image # OCR
|
24 |
from pathlib import Path
|
25 |
+
from pptx import Presentation # Microsoft PowerPoint
|
26 |
+
from openpyxl import load_workbook # Microsoft Excel
|
27 |
|
28 |
+
# ============================
|
29 |
+
# System Setup
|
30 |
+
# ============================
|
31 |
|
32 |
+
# Install Tesseract OCR and dependencies for text extraction from images.
|
33 |
+
os.system("apt-get update -q -y && \
|
34 |
+
apt-get install -q -y tesseract-ocr \
|
35 |
+
tesseract-ocr-eng tesseract-ocr-ind \
|
36 |
+
libleptonica-dev libtesseract-dev"
|
37 |
+
)
|
38 |
+
|
39 |
+
# ============================
|
40 |
+
# HF Secrets Setup
|
41 |
+
# ============================
|
42 |
+
|
43 |
+
# Initial welcome messages
|
44 |
JARVIS_INIT = json.loads(os.getenv("HELLO", "[]"))
|
45 |
|
46 |
+
# Deep Search
|
47 |
DEEP_SEARCH_PROVIDER_HOST = os.getenv("DEEP_SEARCH_PROVIDER_HOST")
|
48 |
DEEP_SEARCH_PROVIDER_KEY = os.getenv('DEEP_SEARCH_PROVIDER_KEY')
|
49 |
DEEP_SEARCH_INSTRUCTIONS = os.getenv("DEEP_SEARCH_INSTRUCTIONS")
|
50 |
|
51 |
+
# Servers and instructions
|
52 |
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
|
53 |
INTERNAL_AI_INSTRUCTIONS = os.getenv("INTERNAL_TRAINING_DATA")
|
54 |
|
55 |
+
# System instructions mapping
|
56 |
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}"))
|
57 |
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM")
|
58 |
|
59 |
+
# List of available servers
|
60 |
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h]
|
61 |
|
62 |
+
# List of available keys
|
63 |
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k]
|
64 |
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
|
65 |
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}
|
66 |
|
67 |
+
# Server errors codes
|
68 |
+
LINUX_SERVER_ERRORS = set(map(int, filter(None, os.getenv("LINUX_SERVER_ERROR", "").split(","))))
|
69 |
|
70 |
+
# Personal UI
|
71 |
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 10)}
|
|
|
72 |
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)}
|
73 |
|
74 |
+
# Model mapping
|
75 |
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
|
76 |
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
|
77 |
MODEL_CHOICES = list(MODEL_MAPPING.values())
|
78 |
|
79 |
+
# Default model config and key for fallback
|
80 |
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
|
81 |
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None
|
82 |
|
83 |
+
# HTML <head> codes (SEO, etc.)
|
84 |
META_TAGS = os.getenv("META_TAGS")
|
85 |
|
86 |
+
# Allowed file extensions
|
87 |
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))
|
88 |
|
89 |
+
# ============================
|
90 |
+
# Session Management
|
91 |
+
# ============================
|
92 |
+
|
93 |
class SessionWithID(requests.Session):
|
94 |
+
"""
|
95 |
+
Custom session object that holds a unique session ID and async control flags.
|
96 |
+
Used to track individual user sessions and allow cancellation of ongoing requests.
|
97 |
+
"""
|
98 |
+
def __init__(self):
|
99 |
super().__init__()
|
100 |
+
self.session_id = str(uuid.uuid4()) # Unique ID per session
|
101 |
+
self.stop_event = asyncio.Event() # Async event to signal stop requests
|
102 |
+
self.cancel_token = {"cancelled": False} # Flag to indicate cancellation
|
103 |
|
104 |
def create_session():
|
105 |
+
"""
|
106 |
+
Create and return a new SessionWithID object.
|
107 |
+
Called when a new user session starts or chat is reset.
|
108 |
+
"""
|
109 |
return SessionWithID()
|
110 |
|
111 |
def ensure_stop_event(sess):
|
112 |
+
"""
|
113 |
+
Ensure that the session object has stop_event and cancel_token attributes.
|
114 |
+
Useful when restoring or reusing sessions.
|
115 |
+
"""
|
116 |
if not hasattr(sess, "stop_event"):
|
117 |
sess.stop_event = asyncio.Event()
|
118 |
if not hasattr(sess, "cancel_token"):
|
119 |
sess.cancel_token = {"cancelled": False}
|
120 |
|
121 |
def marked_item(item, marked, attempts):
|
122 |
+
"""
|
123 |
+
Mark a provider key or host as temporarily problematic after repeated failures.
|
124 |
+
Automatically unmark after 5 minutes to retry.
|
125 |
+
This helps avoid repeatedly using failing providers.
|
126 |
+
"""
|
127 |
marked.add(item)
|
128 |
attempts[item] = attempts.get(item, 0) + 1
|
129 |
if attempts[item] >= 3:
|
|
|
133 |
threading.Timer(300, remove).start()
|
134 |
|
135 |
def get_model_key(display):
|
136 |
+
"""
|
137 |
+
Get the internal model key (identifier) from the display name.
|
138 |
+
Returns default model key if not found.
|
139 |
+
"""
|
140 |
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY)
|
141 |
|
142 |
+
# ============================
|
143 |
+
# File Content Extraction Utilities
|
144 |
+
# ============================
|
145 |
+
|
146 |
def extract_pdf_content(fp):
|
147 |
+
"""
|
148 |
+
Extract text content from PDF file.
|
149 |
+
Includes OCR on embedded images to capture text within images.
|
150 |
+
Also extracts tables as tab-separated text.
|
151 |
+
"""
|
152 |
content = ""
|
153 |
try:
|
154 |
with pdfplumber.open(fp) as pdf:
|
155 |
for page in pdf.pages:
|
156 |
+
# Extract text from page
|
157 |
text = page.extract_text() or ""
|
158 |
content += text + "\n"
|
159 |
+
# OCR on images if any
|
160 |
if page.images:
|
161 |
img_obj = page.to_image(resolution=300)
|
162 |
for img in page.images:
|
|
|
165 |
ocr_text = pytesseract.image_to_string(cropped)
|
166 |
if ocr_text.strip():
|
167 |
content += ocr_text + "\n"
|
168 |
+
# Extract tables as TSV
|
169 |
tables = page.extract_tables()
|
170 |
for table in tables:
|
171 |
for row in table:
|
|
|
173 |
if cells:
|
174 |
content += "\t".join(cells) + "\n"
|
175 |
except Exception as e:
|
176 |
+
content += f"\n[Error reading PDF {fp}: {e}]"
|
177 |
return content.strip()
|
178 |
|
179 |
def extract_docx_content(fp):
|
180 |
+
"""
|
181 |
+
Extract text from Microsoft Word files.
|
182 |
+
Also performs OCR on embedded images inside the Microsoft Word archive.
|
183 |
+
"""
|
184 |
content = ""
|
185 |
try:
|
186 |
doc = docx.Document(fp)
|
187 |
+
# Extract paragraphs
|
188 |
for para in doc.paragraphs:
|
189 |
content += para.text + "\n"
|
190 |
+
# Extract tables
|
191 |
for table in doc.tables:
|
192 |
for row in table.rows:
|
193 |
cells = [cell.text for cell in row.cells]
|
194 |
content += "\t".join(cells) + "\n"
|
195 |
+
# OCR on embedded images inside Microsoft Word
|
196 |
with zipfile.ZipFile(fp) as z:
|
197 |
for file in z.namelist():
|
198 |
if file.startswith("word/media/"):
|
|
|
202 |
ocr_text = pytesseract.image_to_string(img)
|
203 |
if ocr_text.strip():
|
204 |
content += ocr_text + "\n"
|
205 |
+
except Exception:
|
206 |
+
# Ignore images that can't be processed
|
207 |
pass
|
208 |
except Exception as e:
|
209 |
+
content += f"\n[Error reading Microsoft Word {fp}: {e}]"
|
210 |
return content.strip()
|
211 |
|
212 |
def extract_excel_content(fp):
|
213 |
+
"""
|
214 |
+
Extract content from Microsoft Excel files.
|
215 |
+
Converts sheets to CSV text.
|
216 |
+
Attempts OCR on embedded images if present.
|
217 |
+
"""
|
218 |
content = ""
|
219 |
try:
|
220 |
+
# Extract all sheets as CSV text
|
221 |
sheets = pd.read_excel(fp, sheet_name=None)
|
222 |
for name, df in sheets.items():
|
223 |
content += f"Sheet: {name}\n"
|
224 |
content += df.to_csv(index=False) + "\n"
|
225 |
+
# Load workbook to access images
|
226 |
wb = load_workbook(fp, data_only=True)
|
227 |
if wb._images:
|
228 |
for image in wb._images:
|
229 |
+
try:
|
230 |
+
pil_img = Image.open(io.BytesIO(image._data()))
|
231 |
+
ocr_text = pytesseract.image_to_string(pil_img)
|
232 |
+
if ocr_text.strip():
|
233 |
+
content += ocr_text + "\n"
|
234 |
+
except Exception:
|
235 |
+
# Ignore images that can't be processed
|
236 |
+
pass
|
|
|
237 |
except Exception as e:
|
238 |
+
content += f"\n[Error reading Microsoft Excel {fp}: {e}]"
|
239 |
return content.strip()
|
240 |
|
241 |
def extract_pptx_content(fp):
|
242 |
+
"""
|
243 |
+
Extract text content from Microsoft PowerPoint presentation slides.
|
244 |
+
Includes text from shapes and tables.
|
245 |
+
Performs OCR on embedded images.
|
246 |
+
"""
|
247 |
content = ""
|
248 |
try:
|
249 |
prs = Presentation(fp)
|
250 |
for slide in prs.slides:
|
251 |
for shape in slide.shapes:
|
252 |
+
# Extract text from shapes
|
253 |
if hasattr(shape, "text") and shape.text:
|
254 |
content += shape.text + "\n"
|
255 |
+
# OCR on images inside shapes
|
256 |
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image:
|
257 |
try:
|
258 |
img = Image.open(io.BytesIO(shape.image.blob))
|
259 |
ocr_text = pytesseract.image_to_string(img)
|
260 |
if ocr_text.strip():
|
261 |
content += ocr_text + "\n"
|
262 |
+
except Exception:
|
263 |
pass
|
264 |
+
# Extract tables
|
265 |
for shape in slide.shapes:
|
266 |
if shape.has_table:
|
267 |
table = shape.table
|
|
|
269 |
cells = [cell.text for cell in row.cells]
|
270 |
content += "\t".join(cells) + "\n"
|
271 |
except Exception as e:
|
272 |
+
content += f"\n[Error reading Microsoft PowerPoint {fp}: {e}]"
|
273 |
return content.strip()
|
274 |
|
275 |
def extract_file_content(fp):
|
276 |
+
"""
|
277 |
+
Determine file type by extension and extract text content accordingly.
|
278 |
+
For unknown types, attempts to read as plain text.
|
279 |
+
"""
|
280 |
ext = Path(fp).suffix.lower()
|
281 |
if ext == ".pdf":
|
282 |
return extract_pdf_content(fp)
|
|
|
290 |
try:
|
291 |
return Path(fp).read_text(encoding="utf-8").strip()
|
292 |
except Exception as e:
|
293 |
+
return f"\n[Error reading file {fp}: {e}]"
|
294 |
+
|
295 |
+
# ============================
|
296 |
+
# AI Server Communication
|
297 |
+
# ============================
|
298 |
|
299 |
async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_event, cancel_token):
|
300 |
+
"""
|
301 |
+
Async generator that streams AI responses from a backend server.
|
302 |
+
Implements retry logic and marks failing keys to avoid repeated failures.
|
303 |
+
Streams reasoning and content separately for richer UI updates.
|
304 |
+
"""
|
305 |
+
for timeout in [5, 10]:
|
306 |
try:
|
307 |
+
async with httpx.AsyncClient(timeout=timeout) as client:
|
308 |
async with client.stream("POST", host, json={**{"model": model, "messages": msgs, "session_id": sid, "stream": True}, **cfg}, headers={"Authorization": f"Bearer {key}"}) as response:
|
309 |
if response.status_code in LINUX_SERVER_ERRORS:
|
310 |
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
|
|
|
323 |
if isinstance(j, dict) and j.get("choices"):
|
324 |
for ch in j["choices"]:
|
325 |
delta = ch.get("delta", {})
|
326 |
+
# Stream reasoning text separately for UI
|
327 |
if "reasoning" in delta and delta["reasoning"]:
|
328 |
decoded = delta["reasoning"].encode('utf-8').decode('unicode_escape')
|
329 |
yield ("reasoning", decoded)
|
330 |
+
# Stream main content text
|
331 |
if "content" in delta and delta["content"]:
|
332 |
yield ("content", delta["content"])
|
333 |
+
except Exception:
|
334 |
+
# Ignore malformed JSON or unexpected data
|
335 |
continue
|
336 |
+
except Exception:
|
337 |
+
# Network or other errors, try next timeout or mark key
|
338 |
continue
|
339 |
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
|
340 |
return
|
341 |
|
342 |
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt, deep_search):
|
343 |
+
"""
|
344 |
+
Core async function to interact with AI model.
|
345 |
+
Prepares message history, system instructions, and optionally integrates deep search results.
|
346 |
+
Tries multiple backend hosts and keys with fallback.
|
347 |
+
Yields streamed responses for UI updates.
|
348 |
+
"""
|
349 |
ensure_stop_event(sess)
|
350 |
sess.stop_event.clear()
|
351 |
sess.cancel_token["cancelled"] = False
|
352 |
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
|
353 |
+
yield ("content", RESPONSES["RESPONSE_3"]) # No providers available
|
354 |
return
|
355 |
if not hasattr(sess, "session_id") or not sess.session_id:
|
356 |
sess.session_id = str(uuid.uuid4())
|
357 |
model_key = get_model_key(model_display)
|
358 |
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG)
|
359 |
msgs = []
|
360 |
+
# If deep search enabled and using primary model, prepend deep search instructions and results
|
361 |
if deep_search and model_display == MODEL_CHOICES[0]:
|
362 |
msgs.append({"role": "system", "content": DEEP_SEARCH_INSTRUCTIONS})
|
363 |
try:
|
|
|
380 |
r = await client.post(DEEP_SEARCH_PROVIDER_HOST, headers={"Authorization": f"Bearer {DEEP_SEARCH_PROVIDER_KEY}"}, json=payload)
|
381 |
sr_json = r.json()
|
382 |
msgs.append({"role": "system", "content": json.dumps(sr_json)})
|
383 |
+
except Exception:
|
384 |
+
# Fail silently if deep search fails
|
385 |
pass
|
386 |
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
|
387 |
elif model_display == MODEL_CHOICES[0]:
|
388 |
+
# For primary model without deep search, use internal instructions
|
389 |
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
|
390 |
else:
|
391 |
+
# For other models, use default instructions
|
392 |
msgs.append({"role": "system", "content": custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)})
|
393 |
+
# Append conversation history alternating user and assistant messages
|
394 |
+
msgs.extend([{"role": "user", "content": u} for u, _ in history])
|
395 |
+
msgs.extend([{"role": "assistant", "content": a} for _, a in history if a])
|
396 |
+
# Append current user input
|
397 |
msgs.append({"role": "user", "content": user_input})
|
398 |
+
# Shuffle provider hosts and keys for load balancing and fallback
|
399 |
candidates = [(h, k) for h in LINUX_SERVER_HOSTS for k in LINUX_SERVER_PROVIDER_KEYS]
|
400 |
random.shuffle(candidates)
|
401 |
+
# Try each host-key pair until a successful response is received
|
402 |
for h, k in candidates:
|
403 |
stream_gen = fetch_response_stream_async(h, k, model_key, msgs, cfg, sess.session_id, sess.stop_event, sess.cancel_token)
|
404 |
got_responses = False
|
|
|
409 |
yield chunk
|
410 |
if got_responses:
|
411 |
return
|
412 |
+
# If no response from any provider, yield fallback message
|
413 |
yield ("content", RESPONSES["RESPONSE_2"])
|
414 |
|
415 |
+
# ============================
|
416 |
+
# Gradio Interaction Handlers
|
417 |
+
# ============================
|
418 |
+
|
419 |
async def respond_async(multi, history, model_display, sess, custom_prompt, deep_search):
|
420 |
+
"""
|
421 |
+
Main async handler for user input submission.
|
422 |
+
Supports text + file uploads (multi-modal input).
|
423 |
+
Extracts file content and appends to user input.
|
424 |
+
Streams AI responses back to UI, updating chat history live.
|
425 |
+
Allows stopping response generation gracefully.
|
426 |
+
"""
|
427 |
ensure_stop_event(sess)
|
428 |
sess.stop_event.clear()
|
429 |
sess.cancel_token["cancelled"] = False
|
430 |
+
# Extract text and files from multimodal input
|
431 |
msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])}
|
432 |
+
# If no input, reset UI state and return
|
433 |
if not msg_input["text"] and not msg_input["files"]:
|
434 |
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
|
435 |
return
|
436 |
+
# Initialize input with extracted file contents
|
437 |
inp = ""
|
438 |
for f in msg_input["files"]:
|
439 |
+
# Support dict or direct file path
|
440 |
fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f
|
441 |
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n"
|
442 |
+
# Append user text input if any
|
443 |
if msg_input["text"]:
|
444 |
inp += msg_input["text"]
|
445 |
+
# Append user input to chat history with placeholder response
|
446 |
history.append([inp, RESPONSES["RESPONSE_8"]])
|
447 |
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
|
448 |
queue = asyncio.Queue()
|
449 |
+
# Background async task to fetch streamed AI responses
|
450 |
async def background():
|
451 |
reasoning = ""
|
452 |
responses = ""
|
|
|
465 |
content_started = True
|
466 |
ignore_reasoning = True
|
467 |
responses = chunk
|
468 |
+
await queue.put(("reasoning", "")) # Clear reasoning on content start
|
469 |
await queue.put(("replace", responses))
|
470 |
else:
|
471 |
responses += chunk
|
|
|
474 |
return responses
|
475 |
bg_task = asyncio.create_task(background())
|
476 |
stop_task = asyncio.create_task(sess.stop_event.wait())
|
477 |
+
pending_tasks = {bg_task, stop_task}
|
478 |
try:
|
479 |
while True:
|
480 |
+
queue_task = asyncio.create_task(queue.get())
|
481 |
+
pending_tasks.add(queue_task)
|
482 |
+
done, _ = await asyncio.wait({stop_task, queue_task}, return_when=asyncio.FIRST_COMPLETED)
|
483 |
+
for task in done:
|
484 |
+
pending_tasks.discard(task)
|
485 |
+
if task is stop_task:
|
486 |
+
# User requested stop, cancel background task and update UI
|
487 |
+
sess.cancel_token["cancelled"] = True
|
488 |
+
bg_task.cancel()
|
489 |
+
try:
|
490 |
+
await bg_task
|
491 |
+
except asyncio.CancelledError:
|
492 |
+
pass
|
493 |
+
history[-1][1] = RESPONSES["RESPONSE_1"]
|
494 |
+
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
|
495 |
+
return
|
496 |
+
result = task.result()
|
497 |
if result is None:
|
498 |
raise StopAsyncIteration
|
499 |
action, text = result
|
500 |
+
# Update last message content in history with streamed text
|
501 |
history[-1][1] = text
|
502 |
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
|
503 |
except StopAsyncIteration:
|
504 |
pass
|
505 |
finally:
|
506 |
+
for task in pending_tasks:
|
507 |
+
task.cancel()
|
508 |
+
await asyncio.gather(*pending_tasks, return_exceptions=True)
|
509 |
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
|
510 |
|
511 |
def change_model(new):
|
512 |
+
"""
|
513 |
+
Handler to change selected AI model.
|
514 |
+
Resets chat history and session.
|
515 |
+
Updates system instructions and deep search checkbox visibility accordingly.
|
516 |
+
"""
|
517 |
visible = new == MODEL_CHOICES[0]
|
518 |
+
default_prompt = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT)
|
519 |
+
return [], create_session(), new, default_prompt, False, gr.update(visible=visible)
|
520 |
|
521 |
def stop_response(history, sess):
|
522 |
+
"""
|
523 |
+
Handler to stop ongoing AI response generation.
|
524 |
+
Sets cancellation flags and updates last message to cancellation notice.
|
525 |
+
"""
|
526 |
ensure_stop_event(sess)
|
527 |
sess.stop_event.set()
|
528 |
sess.cancel_token["cancelled"] = True
|
|
|
530 |
history[-1][1] = RESPONSES["RESPONSE_1"]
|
531 |
return history, None, create_session()
|
532 |
|
533 |
+
# ============================
|
534 |
+
# Gradio UI Setup
|
535 |
+
# ============================
|
536 |
+
|
537 |
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
|
538 |
user_history = gr.State([])
|
539 |
user_session = gr.State(create_session())
|
540 |
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
|
541 |
J_A_R_V_I_S = gr.State("")
|
542 |
+
# Chatbot UI
|
543 |
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"], examples=JARVIS_INIT)
|
544 |
+
# Deep search
|
545 |
deep_search = gr.Checkbox(label=AI_TYPES["AI_TYPE_8"], value=False, info=AI_TYPES["AI_TYPE_9"], visible=True)
|
546 |
+
# User's input
|
547 |
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
|
548 |
+
# Sidebar to select AI models
|
549 |
+
with gr.Sidebar(open=False): model_radio = gr.Radio(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
|
550 |
+
# Models change
|
551 |
model_radio.change(fn=change_model, inputs=[model_radio], outputs=[user_history, user_session, selected_model, J_A_R_V_I_S, deep_search, deep_search])
|
552 |
+
# Initial welcome messages
|
553 |
+
def on_example_select(evt: gr.SelectData): return evt.value
|
554 |
chatbot.example_select(fn=on_example_select, inputs=[], outputs=[msg]).then(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session])
|
555 |
+
# Clear chat
|
556 |
+
def clear_chat(history, sess, prompt, model): return [], create_session(), prompt, model, []
|
557 |
deep_search.change(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
|
558 |
chatbot.clear(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
|
559 |
+
# Submit message
|
560 |
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
|
561 |
+
# Stop message
|
562 |
msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session])
|
563 |
+
|
564 |
+
# Launch
|
565 |
jarvis.queue(default_concurrency_limit=2).launch(max_file_size="1mb")
|