File size: 24,655 Bytes
29232b4 446e6d6 0d55539 29232b4 cdd78b7 452f16b cdd78b7 5456854 cdd78b7 5456854 60f9e8e cdd78b7 1ae1905 cdd78b7 fee4a44 92220a2 60f9e8e cdd78b7 af424b9 fee4a44 af424b9 131bbff af424b9 5456854 131bbff c27c217 131bbff 5e49ce6 131bbff 991dd3b 5e49ce6 e678e22 131bbff 3ef53bc 131bbff 3ef53bc 131bbff 1ae1905 5456854 131bbff 23e5505 131bbff 2aa87a7 be88a2b 5456854 131bbff 5456854 3ef53bc be88a2b 131bbff 5456854 3ef53bc 5456854 131bbff 5456854 131bbff cdd78b7 4901fb7 131bbff 3ef53bc 131bbff 3ef53bc 131bbff 3ef53bc 131bbff 3ef53bc 9209ef8 131bbff 9209ef8 e864bae 9209ef8 1ae1905 131bbff 1ae1905 3ef53bc 1ae1905 7bae676 3ef53bc 5456854 3ef53bc 131bbff 3ef53bc 5456854 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 af424b9 131bbff fee4a44 131bbff fee4a44 131bbff af424b9 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff 2ca3c02 fee4a44 131bbff fee4a44 131bbff fee4a44 131bbff 5456854 e864bae 131bbff 4943e2d 131bbff a4cdda6 be88a2b e864bae 96bc1c0 be88a2b 5990eed 131bbff e864bae 131bbff e864bae 5990eed 131bbff be88a2b 131bbff 4943e2d be88a2b e0729bd 5e49ce6 131bbff 18663e1 5b745df e864bae 131bbff 33cd3e2 131bbff be88a2b 131bbff 4f6f363 f4fd6dc 131bbff 3ef53bc 131bbff 5e49ce6 131bbff 5e49ce6 2aa87a7 5e49ce6 131bbff 5e49ce6 131bbff 5e49ce6 131bbff 5e49ce6 131bbff 3ef53bc 131bbff e864bae 131bbff e864bae 96bc1c0 e864bae be88a2b e864bae 131bbff e864bae 5456854 131bbff 5e49ce6 131bbff 18663e1 9209ef8 e864bae 131bbff 9209ef8 131bbff 9209ef8 18663e1 62027e8 131bbff 3ef53bc 9209ef8 131bbff 18663e1 933e48c 131bbff 9209ef8 131bbff 9209ef8 18663e1 131bbff be88a2b 131bbff be88a2b 9a014e8 5990eed 9a014e8 131bbff 5e49ce6 e864bae 6aae148 5990eed 9a014e8 c9018ef 9a014e8 c9018ef 5990eed 9a014e8 131bbff 9a014e8 5990eed 9a014e8 be88a2b 9a014e8 131bbff be88a2b b8dd135 131bbff be88a2b 131bbff e864bae be88a2b 5990eed be88a2b 5990eed 131bbff 5990eed be88a2b 131bbff be88a2b 18663e1 5456854 3ef53bc 131bbff 5e49ce6 131bbff 5456854 9209ef8 131bbff 18663e1 9209ef8 e864bae 9209ef8 e864bae 9209ef8 131bbff eb0a349 131bbff 5456854 e29b7bd cdd78b7 bb792fe 131bbff c27c217 131bbff 2aa87a7 131bbff 9209ef8 131bbff bb792fe 131bbff 5e49ce6 131bbff c27c217 131bbff 5e49ce6 131bbff 5e49ce6 131bbff 9209ef8 131bbff cf21eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#
import asyncio
import codecs
import docx
import gradio as gr
import httpx
import json
import os
import pandas as pd
import pdfplumber
import pytesseract
import random
import requests
import threading
import uuid
import zipfile
import io
from PIL import Image
from pathlib import Path
from pptx import Presentation
from openpyxl import load_workbook
# Install OCR tools and dependencies
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")
# ============================
# Environments
# ============================
# Initial welcome messages
JARVIS_INIT = json.loads(os.getenv("HELLO", "[]"))
# Deep Search
DEEP_SEARCH_PROVIDER_HOST = os.getenv("DEEP_SEARCH_PROVIDER_HOST")
DEEP_SEARCH_PROVIDER_KEY = os.getenv('DEEP_SEARCH_PROVIDER_KEY')
DEEP_SEARCH_INSTRUCTIONS = os.getenv("DEEP_SEARCH_INSTRUCTIONS")
# AI servers, keys and instructions
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
INTERNAL_AI_INSTRUCTIONS = os.getenv("INTERNAL_TRAINING_DATA")
# System instructions mapping for various models and default instructions
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}"))
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM")
# List of available servers and keys
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h]
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k]
# Sets and dicts to track problematic keys and their retry attempts
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}
# HTTP error codes considered as server errors for marking keys
LINUX_SERVER_ERRORS = set(map(int, filter(None, os.getenv("LINUX_SERVER_ERROR", "").split(","))))
# UI labels and responses from environment variables for easy localization/customization
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 10)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)}
# Model mapping and configuration loaded from environment variables
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
# Default model config and key for fallback
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None
# Meta tags for HTML head (SEO, etc.)
META_TAGS = os.getenv("META_TAGS")
# Allowed file extensions for upload (e.g., .pdf, .docx, etc.)
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))
# ============================
# Session Management
# ============================
class SessionWithID(requests.Session):
"""
Custom session object that holds a unique session ID and async control flags.
Used to track individual user sessions and allow cancellation of ongoing requests.
"""
def __init__(self):
super().__init__()
self.session_id = str(uuid.uuid4()) # Unique ID per session
self.stop_event = asyncio.Event() # Async event to signal stop requests
self.cancel_token = {"cancelled": False} # Flag to indicate cancellation
def create_session():
"""
Create and return a new SessionWithID object.
Called when a new user session starts or chat is reset.
"""
return SessionWithID()
def ensure_stop_event(sess):
"""
Ensure that the session object has stop_event and cancel_token attributes.
Useful when restoring or reusing sessions.
"""
if not hasattr(sess, "stop_event"):
sess.stop_event = asyncio.Event()
if not hasattr(sess, "cancel_token"):
sess.cancel_token = {"cancelled": False}
def marked_item(item, marked, attempts):
"""
Mark a provider key or host as temporarily problematic after repeated failures.
Automatically unmark after 5 minutes to retry.
This helps avoid repeatedly using failing providers.
"""
marked.add(item)
attempts[item] = attempts.get(item, 0) + 1
if attempts[item] >= 3:
def remove():
marked.discard(item)
attempts.pop(item, None)
threading.Timer(300, remove).start()
def get_model_key(display):
"""
Get the internal model key (identifier) from the display name.
Returns default model key if not found.
"""
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY)
# ============================
# File Content Extraction Utilities
# ============================
def extract_pdf_content(fp):
"""
Extract text content from PDF file.
Includes OCR on embedded images to capture text within images.
Also extracts tables as tab-separated text.
"""
content = ""
try:
with pdfplumber.open(fp) as pdf:
for page in pdf.pages:
# Extract text from page
text = page.extract_text() or ""
content += text + "\n"
# OCR on images if any
if page.images:
img_obj = page.to_image(resolution=300)
for img in page.images:
bbox = (img["x0"], img["top"], img["x1"], img["bottom"])
cropped = img_obj.original.crop(bbox)
ocr_text = pytesseract.image_to_string(cropped)
if ocr_text.strip():
content += ocr_text + "\n"
# Extract tables as TSV
tables = page.extract_tables()
for table in tables:
for row in table:
cells = [str(cell) for cell in row if cell is not None]
if cells:
content += "\t".join(cells) + "\n"
except Exception as e:
content += f"\n[Error reading PDF {fp}: {e}]"
return content.strip()
def extract_docx_content(fp):
"""
Extract text from Microsoft Word files.
Also performs OCR on embedded images inside the Microsoft Word archive.
"""
content = ""
try:
doc = docx.Document(fp)
# Extract paragraphs
for para in doc.paragraphs:
content += para.text + "\n"
# Extract tables
for table in doc.tables:
for row in table.rows:
cells = [cell.text for cell in row.cells]
content += "\t".join(cells) + "\n"
# OCR on embedded images inside Microsoft Word
with zipfile.ZipFile(fp) as z:
for file in z.namelist():
if file.startswith("word/media/"):
data = z.read(file)
try:
img = Image.open(io.BytesIO(data))
ocr_text = pytesseract.image_to_string(img)
if ocr_text.strip():
content += ocr_text + "\n"
except Exception:
# Ignore images that can't be processed
pass
except Exception as e:
content += f"\n[Error reading Microsoft Word {fp}: {e}]"
return content.strip()
def extract_excel_content(fp):
"""
Extract content from Microsoft Excel files.
Converts sheets to CSV text.
Attempts OCR on embedded images if present.
"""
content = ""
try:
# Extract all sheets as CSV text
sheets = pd.read_excel(fp, sheet_name=None)
for name, df in sheets.items():
content += f"Sheet: {name}\n"
content += df.to_csv(index=False) + "\n"
# Load workbook to access images
wb = load_workbook(fp, data_only=True)
if wb._images:
for image in wb._images:
try:
pil_img = Image.open(io.BytesIO(image._data()))
ocr_text = pytesseract.image_to_string(pil_img)
if ocr_text.strip():
content += ocr_text + "\n"
except Exception:
# Ignore images that can't be processed
pass
except Exception as e:
content += f"\n[Error reading Microsoft Excel {fp}: {e}]"
return content.strip()
def extract_pptx_content(fp):
"""
Extract text content from Microsoft PowerPoint presentation slides.
Includes text from shapes and tables.
Performs OCR on embedded images.
"""
content = ""
try:
prs = Presentation(fp)
for slide in prs.slides:
for shape in slide.shapes:
# Extract text from shapes
if hasattr(shape, "text") and shape.text:
content += shape.text + "\n"
# OCR on images inside shapes
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image:
try:
img = Image.open(io.BytesIO(shape.image.blob))
ocr_text = pytesseract.image_to_string(img)
if ocr_text.strip():
content += ocr_text + "\n"
except Exception:
pass
# Extract tables
for shape in slide.shapes:
if shape.has_table:
table = shape.table
for row in table.rows:
cells = [cell.text for cell in row.cells]
content += "\t".join(cells) + "\n"
except Exception as e:
content += f"\n[Error reading Microsoft PowerPoint {fp}: {e}]"
return content.strip()
def extract_file_content(fp):
"""
Determine file type by extension and extract text content accordingly.
For unknown types, attempts to read as plain text.
"""
ext = Path(fp).suffix.lower()
if ext == ".pdf":
return extract_pdf_content(fp)
elif ext in [".doc", ".docx"]:
return extract_docx_content(fp)
elif ext in [".xlsx", ".xls"]:
return extract_excel_content(fp)
elif ext in [".ppt", ".pptx"]:
return extract_pptx_content(fp)
else:
try:
return Path(fp).read_text(encoding="utf-8").strip()
except Exception as e:
return f"\n[Error reading file {fp}: {e}]"
# ============================
# Server Communication
# ============================
async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_event, cancel_token):
"""
Async generator that streams AI responses from a backend server.
Implements retry logic and marks failing keys to avoid repeated failures.
Streams reasoning and content separately for richer UI updates.
"""
for timeout in [5, 10]:
try:
async with httpx.AsyncClient(timeout=timeout) as client:
async with client.stream(
"POST",
host,
json={**{"model": model, "messages": msgs, "session_id": sid, "stream": True}, **cfg},
headers={"Authorization": f"Bearer {key}"}
) as response:
if response.status_code in LINUX_SERVER_ERRORS:
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return
async for line in response.aiter_lines():
if stop_event.is_set() or cancel_token["cancelled"]:
return
if not line:
continue
if line.startswith("data: "):
data = line[6:]
if data.strip() == RESPONSES["RESPONSE_10"]:
return
try:
j = json.loads(data)
if isinstance(j, dict) and j.get("choices"):
for ch in j["choices"]:
delta = ch.get("delta", {})
# Stream reasoning text separately for UI
if "reasoning" in delta and delta["reasoning"]:
decoded = delta["reasoning"].encode('utf-8').decode('unicode_escape')
yield ("reasoning", decoded)
# Stream main content text
if "content" in delta and delta["content"]:
yield ("content", delta["content"])
except Exception:
# Ignore malformed JSON or unexpected data
continue
except Exception:
# Network or other errors, try next timeout or mark key
continue
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt, deep_search):
"""
Core async function to interact with AI model.
Prepares message history, system instructions, and optionally integrates deep search results.
Tries multiple backend hosts and keys with fallback.
Yields streamed responses for UI updates.
"""
ensure_stop_event(sess)
sess.stop_event.clear()
sess.cancel_token["cancelled"] = False
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
yield ("content", RESPONSES["RESPONSE_3"]) # No providers available
return
if not hasattr(sess, "session_id") or not sess.session_id:
sess.session_id = str(uuid.uuid4())
model_key = get_model_key(model_display)
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG)
msgs = []
# If deep search enabled and using primary model, prepend deep search instructions and results
if deep_search and model_display == MODEL_CHOICES[0]:
msgs.append({"role": "system", "content": DEEP_SEARCH_INSTRUCTIONS})
try:
async with httpx.AsyncClient() as client:
payload = {
"query": user_input,
"topic": "general",
"search_depth": "basic",
"chunks_per_source": 5,
"max_results": 5,
"time_range": None,
"days": 7,
"include_answer": True,
"include_raw_content": False,
"include_images": False,
"include_image_descriptions": False,
"include_domains": [],
"exclude_domains": []
}
r = await client.post(DEEP_SEARCH_PROVIDER_HOST, headers={"Authorization": f"Bearer {DEEP_SEARCH_PROVIDER_KEY}"}, json=payload)
sr_json = r.json()
msgs.append({"role": "system", "content": json.dumps(sr_json)})
except Exception:
# Fail silently if deep search fails
pass
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
elif model_display == MODEL_CHOICES[0]:
# For primary model without deep search, use internal instructions
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
else:
# For other models, use default instructions
msgs.append({"role": "system", "content": custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)})
# Append conversation history alternating user and assistant messages
msgs.extend([{"role": "user", "content": u} for u, _ in history])
msgs.extend([{"role": "assistant", "content": a} for _, a in history if a])
# Append current user input
msgs.append({"role": "user", "content": user_input})
# Shuffle provider hosts and keys for load balancing and fallback
candidates = [(h, k) for h in LINUX_SERVER_HOSTS for k in LINUX_SERVER_PROVIDER_KEYS]
random.shuffle(candidates)
# Try each host-key pair until a successful response is received
for h, k in candidates:
stream_gen = fetch_response_stream_async(h, k, model_key, msgs, cfg, sess.session_id, sess.stop_event, sess.cancel_token)
got_responses = False
async for chunk in stream_gen:
if sess.stop_event.is_set() or sess.cancel_token["cancelled"]:
return
got_responses = True
yield chunk
if got_responses:
return
# If no response from any provider, yield fallback message
yield ("content", RESPONSES["RESPONSE_2"])
# ============================
# Gradio Interaction Handlers
# ============================
async def respond_async(multi, history, model_display, sess, custom_prompt, deep_search):
"""
Main async handler for user input submission.
Supports text + file uploads (multi-modal input).
Extracts file content and appends to user input.
Streams AI responses back to UI, updating chat history live.
Allows stopping response generation gracefully.
"""
ensure_stop_event(sess)
sess.stop_event.clear()
sess.cancel_token["cancelled"] = False
# Extract text and files from multimodal input
msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])}
# If no input, reset UI state and return
if not msg_input["text"] and not msg_input["files"]:
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
return
# Initialize input with extracted file contents
inp = ""
for f in msg_input["files"]:
# Support dict or direct file path
fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n"
# Append user text input if any
if msg_input["text"]:
inp += msg_input["text"]
# Append user input to chat history with placeholder response
history.append([inp, RESPONSES["RESPONSE_8"]])
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
queue = asyncio.Queue()
# Background async task to fetch streamed AI responses
async def background():
reasoning = ""
responses = ""
content_started = False
ignore_reasoning = False
async for typ, chunk in chat_with_model_async(history, inp, model_display, sess, custom_prompt, deep_search):
if sess.stop_event.is_set() or sess.cancel_token["cancelled"]:
break
if typ == "reasoning":
if ignore_reasoning:
continue
reasoning += chunk
await queue.put(("reasoning", reasoning))
elif typ == "content":
if not content_started:
content_started = True
ignore_reasoning = True
responses = chunk
await queue.put(("reasoning", "")) # Clear reasoning on content start
await queue.put(("replace", responses))
else:
responses += chunk
await queue.put(("append", responses))
await queue.put(None)
return responses
bg_task = asyncio.create_task(background())
stop_task = asyncio.create_task(sess.stop_event.wait())
try:
while True:
done, _ = await asyncio.wait({stop_task, asyncio.create_task(queue.get())}, return_when=asyncio.FIRST_COMPLETED)
if stop_task in done:
# User requested stop, cancel background task and update UI
sess.cancel_token["cancelled"] = True
bg_task.cancel()
history[-1][1] = RESPONSES["RESPONSE_1"]
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
return
for d in done:
result = d.result()
if result is None:
raise StopAsyncIteration
action, text = result
# Update last message content in history with streamed text
history[-1][1] = text
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
except StopAsyncIteration:
pass
finally:
stop_task.cancel()
# Await full response to ensure completion
full_response = await bg_task
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
def change_model(new):
"""
Handler to change selected AI model.
Resets chat history and session.
Updates system instructions and deep search checkbox visibility accordingly.
"""
visible = new == MODEL_CHOICES[0]
default_prompt = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT)
return [], create_session(), new, default_prompt, False, gr.update(visible=visible)
def stop_response(history, sess):
"""
Handler to stop ongoing AI response generation.
Sets cancellation flags and updates last message to cancellation notice.
"""
ensure_stop_event(sess)
sess.stop_event.set()
sess.cancel_token["cancelled"] = True
if history:
history[-1][1] = RESPONSES["RESPONSE_1"]
return history, None, create_session()
# ============================
# Gradio UI Setup
# ============================
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
# States to keep chat history, user session, selected model and custom instructions
user_history = gr.State([])
user_session = gr.State(create_session())
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
J_A_R_V_I_S = gr.State("")
# Chatbot UI component with initial welcome messages loaded from env variable
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"], examples=JARVIS_INIT)
# Checkbox to enable/disable deep search feature
deep_search = gr.Checkbox(label=AI_TYPES["AI_TYPE_8"], value=False, info=AI_TYPES["AI_TYPE_9"], visible=True)
# Multimodal Textbox (support text input + file upload. Limited to single file, restricted file types)
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
# Sidebar with radio buttons to select AI model
with gr.Sidebar(open=False):
model_radio = gr.Radio(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
# When model changes, reset chat and update prompt/deep search checkbox visibility
model_radio.change(fn=change_model, inputs=[model_radio], outputs=[user_history, user_session, selected_model, J_A_R_V_I_S, deep_search, deep_search])
# When initial welcome messages selected from chatbot, populate input box and trigger response
def on_example_select(evt: gr.SelectData):
return evt.value
chatbot.example_select(fn=on_example_select, inputs=[], outputs=[msg]).then(
fn=respond_async,
inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search],
outputs=[chatbot, msg, user_session]
)
# Clear chat, resets history, session and states
def clear_chat(history, sess, prompt, model):
return [], create_session(), prompt, model, []
deep_search.change(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
chatbot.clear(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
# Submit message triggers async AI response generation
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
# Stop button cancels ongoing response generation
msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session])
# Launch
jarvis.queue(default_concurrency_limit=2).launch(max_file_size="1mb")
|