Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
MODEL_NAME = "manycore-research/SpatialLM-Llama-1B" | |
# Carrega tokenizer e modelo | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=torch.float16, | |
device_map="auto" # Usa GPU se disponível | |
) | |
model.eval() | |
# Função de geração | |
def generate_response(prompt, temperature=0.7, top_p=0.95, max_new_tokens=200): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Interface Gradio | |
interface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Digite algo como 'Luan invadiu a base da Hegemonia...'"), | |
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p"), | |
gr.Slider(minimum=10, maximum=512, value=200, label="Max Tokens") | |
], | |
outputs=gr.Textbox(label="Resposta do Modelo"), | |
title="SpatialLM - Llama 1B", | |
description="Modelo SpatialLM LLaMA 1B rodando com GPU no Hugging Face Spaces. Ideal pra geração de texto contextualizado e linguagem espacial. Use prompts criativos." | |
) | |
interface.launch() |