File size: 2,441 Bytes
e8cdb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gradio as gr
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
import os
from model.utils import preprocess_input, save_feedback
from model.auto_learn import trigger_auto_learning

# Carregar modelo e tokenizador
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

# Mover para GPU se disponível
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Função principal de inferência
def generate_text(prompt, max_length=100, temperature=0.7):
    inputs = preprocess_input(prompt, tokenizer)
    input_ids = inputs["input_ids"].to(device)
    
    outputs = model.generate(
        input_ids,
        max_length=max_length,
        temperature=temperature,
        num_return_sequences=1,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )
    
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

# Função para coletar feedback e disparar autoaprendizado
def submit_feedback(prompt, generated_text, user_feedback):
    save_feedback(prompt, generated_text, user_feedback)
    trigger_auto_learning()  # Dispara fine-tuning se necessário
    return "Feedback salvo com sucesso!"

# Interface com Gradio
def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# GPT-2 no Hugging Face")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Digite seu prompt")
                max_length = gr.Slider(50, 500, value=100, label="Comprimento máximo")
                temperature = gr.Slider(0.1, 1.0, value=0.7, label="Temperatura")
                generate_btn = gr.Button("Gerar Texto")
            with gr.Column():
                output = gr.Textbox(label="Texto Gerado")
                feedback = gr.Textbox(label="Feedback (opcional)")
                feedback_btn = gr.Button("Enviar Feedback")
        
        generate_btn.click(
            fn=generate_text,
            inputs=[prompt, max_length, temperature],
            outputs=output
        )
        feedback_btn.click(
            fn=submit_feedback,
            inputs=[prompt, output, feedback],
            outputs=gr.Textbox()
        )
    
    return demo

# Iniciar a interface
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860)