import torch import gradio as gr from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling ) from datasets import load_dataset import logging import sys # Configure logging logging.basicConfig(stream=sys.stdout, level=logging.INFO) def train(): try: # Load model and tokenizer model_name = "microsoft/phi-2" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True) # Add padding token if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Load dataset dataset = load_dataset( "csv", data_files={ "train": "data/train/data.csv", "validation": "data/validation/data.csv" } ) # Tokenization function def tokenize_function(examples): return tokenizer( examples["text"], padding="max_length", truncation=True, max_length=256, return_tensors="pt", ) tokenized_dataset = dataset.map( tokenize_function, batched=True, remove_columns=["text"] ) # Data collator data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=False ) # Training arguments training_args = TrainingArguments( output_dir="./phi2-results", per_device_train_batch_size=2, per_device_eval_batch_size=2, num_train_epochs=3, logging_dir="./logs", logging_steps=10, fp16=False, ) # Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["validation"], data_collator=data_collator, ) # Start training logging.info("Training started...") trainer.train() trainer.save_model("./phi2-trained-model") logging.info("Training completed!") return "✅ Training succeeded! Model saved." except Exception as e: logging.error(f"Training failed: {str(e)}") return f"❌ Training failed: {str(e)}" # Gradio UI with gr.Blocks(title="Phi-2 Training") as demo: gr.Markdown("# 🚀 Train Phi-2 on CPU") with gr.Row(): start_btn = gr.Button("Start Training", variant="primary") status_output = gr.Textbox(label="Status", interactive=False) start_btn.click( fn=train, outputs=status_output ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)