Spaces:
Sleeping
Sleeping
hackerbyhobby
commited on
app
Browse files
app.py
CHANGED
@@ -1,96 +1,41 @@
|
|
1 |
-
"""
|
2 |
-
Webapp Front End
|
3 |
-
"""
|
4 |
-
|
5 |
import gradio as gr
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
from data.value_maps import category_maps, binary_maps
|
10 |
-
|
11 |
-
MODEL_PATH = "Random_Foresttest_model.pkl"
|
12 |
-
DEFAULT_VALUE = 99
|
13 |
-
try:
|
14 |
-
rf_model = joblib.load(MODEL_PATH)
|
15 |
-
joblib.dump(rf_model, MODEL_PATH)
|
16 |
-
except FileNotFoundError as e:
|
17 |
-
raise FileNotFoundError(
|
18 |
-
f"Model file not found at {MODEL_PATH}. Please check the path."
|
19 |
-
) from e
|
20 |
-
|
21 |
-
og_df = fetch_check(to_fetch=True, to_fillna=True, to_dropna=True)
|
22 |
-
|
23 |
-
binary_inputs = {
|
24 |
-
feature: gr.Radio(
|
25 |
-
choices=list(mapping.keys()),
|
26 |
-
label=feature.replace("_", " "),
|
27 |
-
)
|
28 |
-
for feature, mapping in binary_maps.items()
|
29 |
-
if mapping
|
30 |
-
}
|
31 |
-
|
32 |
-
categorical_inputs = {
|
33 |
-
feature: gr.Dropdown(
|
34 |
-
choices=list(mapping.keys()),
|
35 |
-
label=feature.replace("_", " "),
|
36 |
-
)
|
37 |
-
for feature, mapping in category_maps.items()
|
38 |
-
if mapping
|
39 |
-
}
|
40 |
-
|
41 |
-
input_types = list(categorical_inputs.values()) + list(binary_inputs.values())
|
42 |
-
|
43 |
-
for i in categorical_inputs:
|
44 |
-
print(f"input_types: {i}")
|
45 |
-
for i in binary_inputs:
|
46 |
-
print(f"input_types: {i}")
|
47 |
-
for i in input_types:
|
48 |
-
print(f"input_types: {i}")
|
49 |
|
|
|
|
|
50 |
|
51 |
-
def
|
52 |
-
"""
|
53 |
-
|
54 |
-
|
55 |
-
"""
|
56 |
-
# Use maps to set expected features
|
57 |
-
expected_features = list(categorical_inputs.keys()) + list(binary_inputs.keys())
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
# Ensure all required features are present and that the numerical values are used for the model
|
62 |
-
input_data = {}
|
63 |
-
for feature, user_input in zip(expected_features, user_inputs):
|
64 |
-
if feature in binary_maps:
|
65 |
-
# Convert 'Yes'/'No' to 1/0
|
66 |
-
input_data[feature] = binary_maps[feature].get(user_input, DEFAULT_VALUE)
|
67 |
-
elif feature in category_maps:
|
68 |
-
# Convert categorical values
|
69 |
-
input_data[feature] = category_maps[feature].get(user_input, DEFAULT_VALUE)
|
70 |
-
else:
|
71 |
-
# Default value for unexpected inputs
|
72 |
-
input_data[feature] = DEFAULT_VALUE
|
73 |
-
|
74 |
-
# Create a DataFrame for prediction
|
75 |
-
input_df = pd.DataFrame([input_data])[expected_features]
|
76 |
-
|
77 |
-
# Perform prediction
|
78 |
try:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load the trained model
|
6 |
+
model_path = "tuned_model.pkl"
|
7 |
|
8 |
+
def load_model():
|
9 |
+
"""Load the model from the pickle file."""
|
10 |
+
with open(model_path, "rb") as file:
|
11 |
+
return pickle.load(file)
|
|
|
|
|
|
|
12 |
|
13 |
+
# Prediction function
|
14 |
+
def predict_with_model(*inputs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
try:
|
16 |
+
model = load_model() # Load the model dynamically
|
17 |
+
# Create a DataFrame for prediction
|
18 |
+
input_data = pd.DataFrame([inputs], columns=features)
|
19 |
+
# Make prediction
|
20 |
+
prediction = model.predict(input_data)
|
21 |
+
return f"Prediction: {'Risk of Heart Failure' if prediction[0] == 1 else 'No Risk'}"
|
22 |
+
except Exception as e:
|
23 |
+
return f"Error during prediction: {str(e)}"
|
24 |
+
|
25 |
+
# Features derived from the CSV file
|
26 |
+
features = ["Feature1", "Feature2", "Feature3"] # Replace with actual feature names
|
27 |
+
|
28 |
+
# Create input sliders
|
29 |
+
input_sliders = [gr.Slider(0, 100, label=feature) for feature in features]
|
30 |
+
|
31 |
+
# Define Gradio interface
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=predict_with_model,
|
34 |
+
inputs=input_sliders,
|
35 |
+
outputs="text",
|
36 |
+
title="Heart Failure Prediction App",
|
37 |
+
description="Adjust the sliders to simulate feature values and predict heart failure risk.",
|
38 |
+
)
|
39 |
+
|
40 |
+
# Launch the app
|
41 |
+
iface.launch()
|