import gradio as gr import pytesseract from PIL import Image from transformers import pipeline import re # 1. Load keywords from separate files with open("smishing_keywords.txt", "r", encoding="utf-8") as f: SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()] with open("other_scam_keywords.txt", "r", encoding="utf-8") as f: OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()] # 2. Load the zero-shot classification pipeline model_name = "joeddav/xlm-roberta-large-xnli" classifier = pipeline("zero-shot-classification", model=model_name) # We will classify among these three labels CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"] def boost_probabilities(probabilities: dict, text: str) -> dict: """ Increases SMiShing probability if 'smishing_keywords' or URLs are found. Increases Other Scam probability if 'other_scam_keywords' are found. Reduces Legitimate by the total amount of these boosts. Then clamps negative probabilities to 0 and re-normalizes. """ lower_text = text.lower() # Count smishing keywords smishing_keyword_count = sum(1 for kw in SMISHING_KEYWORDS if kw in lower_text) # Count other scam keywords other_scam_keyword_count = sum(1 for kw in OTHER_SCAM_KEYWORDS if kw in lower_text) # Base boosts smishing_boost = 0.10 * smishing_keyword_count other_scam_boost = 0.10 * other_scam_keyword_count # Check URLs => +0.20 only to Smishing found_urls = re.findall(r"(https?://[^\s]+)", lower_text) if found_urls: smishing_boost += 0.20 # Extract original probabilities p_smishing = probabilities["SMiShing"] p_other_scam = probabilities["Other Scam"] p_legit = probabilities["Legitimate"] # Apply boosts p_smishing += smishing_boost p_other_scam += other_scam_boost # Subtract total boost from Legitimate total_boost = smishing_boost + other_scam_boost p_legit -= total_boost # Clamp negative probabilities if p_smishing < 0: p_smishing = 0.0 if p_other_scam < 0: p_other_scam = 0.0 if p_legit < 0: p_legit = 0.0 # Re-normalize so sum=1 total = p_smishing + p_other_scam + p_legit if total > 0: p_smishing /= total p_other_scam /= total p_legit /= total else: # fallback if everything is zero p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0 return { "SMiShing": p_smishing, "Other Scam": p_other_scam, "Legitimate": p_legit } def smishing_detector(text, image): """ 1. OCR if image provided. 2. Zero-shot classify => base probabilities. 3. Boost probabilities based on keywords + URL logic. 4. Return final classification + confidence. """ combined_text = text or "" if image is not None: ocr_text = pytesseract.image_to_string(image, lang="spa+eng") combined_text += " " + ocr_text combined_text = combined_text.strip() if not combined_text: return { "text_used_for_classification": "(none)", "label": "No text provided", "confidence": 0.0, "smishing_keywords_found": [], "other_scam_keywords_found": [], "urls_found": [] } # Perform zero-shot classification result = classifier( sequences=combined_text, candidate_labels=CANDIDATE_LABELS, hypothesis_template="This message is {}." ) original_probs = dict(zip(result["labels"], result["scores"])) # Apply boosts boosted_probs = boost_probabilities(original_probs, combined_text) final_label = max(boosted_probs, key=boosted_probs.get) final_confidence = round(boosted_probs[final_label], 3) # For display: which keywords + URLs lower_text = combined_text.lower() smishing_found = [kw for kw in SMISHING_KEYWORDS if kw in lower_text] other_scam_found = [kw for kw in OTHER_SCAM_KEYWORDS if kw in lower_text] found_urls = re.findall(r"(https?://[^\s]+)", lower_text) return { "text_used_for_classification": combined_text, "original_probabilities": { k: round(v, 3) for k, v in original_probs.items() }, "boosted_probabilities": { k: round(v, 3) for k, v in boosted_probs.items() }, "label": final_label, "confidence": final_confidence, "smishing_keywords_found": smishing_found, "other_scam_keywords_found": other_scam_found, "urls_found": found_urls, } demo = gr.Interface( fn=smishing_detector, inputs=[ gr.Textbox( lines=3, label="Paste Suspicious SMS Text (English/Spanish)", placeholder="Type or paste the message here..." ), gr.Image( type="pil", label="Or Upload a Screenshot (Optional)" ) ], outputs="json", title="SMiShing & Scam Detector (Separate Keywords + URL → SMiShing)", description=""" This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model (joeddav/xlm-roberta-large-xnli). - 'smishing_keywords.txt' boosts SMiShing specifically. - 'other_scam_keywords.txt' boosts Other Scam specifically. - Any URL found further boosts ONLY Smishing. - The total boost is subtracted from Legitimate. Supports English & Spanish text (OCR included). """, allow_flagging="never" ) if __name__ == "__main__": demo.launch()